Let be a relatively closed subset of a Stein manifold. We prove that the -cohomology groups of Whitney forms on and of currents supported on are either zero or infinite dimensional. This yields obstructions of the existence of a generic embedding of a CR manifold into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate -cohomology groups.
Soit un ensemble relativement fermé d’une variété de Stein. On prouve que les groupes de cohomologie associés à l’opérateur des formes de Whitney sur et des courants à support dans sont soit zéro, soit de dimension infinie. Cela nous permet d’obtenir une condition nécessaire pour l’existence d’un plongement générique d’une variété CR dans un ouvert d’une variété de Stein : il faut que tous les groupes de cohomologie associés à l’opérateur soient ou bien zéro ou bien de dimension infinie.
Keywords: $\bar{\partial }$-operator, tangential $CR$ operator, embedding of $CR$ manifolds
Mot clés : $\bar{\partial }$-opérateur, opérateur $CR$ tangentiel, plongement de variétés $CR$
Brinkschulte, Judith 1; Denson Hill, C. 2; Nacinovich, Mauro 3
@article{AIF_2002__52_6_1785_0, author = {Brinkschulte, Judith and Denson Hill, C. and Nacinovich, Mauro}, title = {Obstructions to generic embeddings}, journal = {Annales de l'Institut Fourier}, pages = {1785--1792}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {6}, year = {2002}, doi = {10.5802/aif.1934}, zbl = {1029.32018}, mrnumber = {1952531}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1934/} }
TY - JOUR AU - Brinkschulte, Judith AU - Denson Hill, C. AU - Nacinovich, Mauro TI - Obstructions to generic embeddings JO - Annales de l'Institut Fourier PY - 2002 SP - 1785 EP - 1792 VL - 52 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1934/ DO - 10.5802/aif.1934 LA - en ID - AIF_2002__52_6_1785_0 ER -
%0 Journal Article %A Brinkschulte, Judith %A Denson Hill, C. %A Nacinovich, Mauro %T Obstructions to generic embeddings %J Annales de l'Institut Fourier %D 2002 %P 1785-1792 %V 52 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1934/ %R 10.5802/aif.1934 %G en %F AIF_2002__52_6_1785_0
Brinkschulte, Judith; Denson Hill, C.; Nacinovich, Mauro. Obstructions to generic embeddings. Annales de l'Institut Fourier, Volume 52 (2002) no. 6, pp. 1785-1792. doi : 10.5802/aif.1934. https://aif.centre-mersenne.org/articles/10.5802/aif.1934/
[AFN] On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa, Volume 8 (1981), pp. 365-404 | Numdam | MR | Zbl
[AH] Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Sc. Norm. Sup. Pisa, Volume 26 (1972), pp. 299-324 | Numdam | MR | Zbl
[AHLM] Complexes of differential operators. The Mayer-Vietoris sequence, Invent. Math, Volume 35 (1976), pp. 43-86 | MR | Zbl
[B] Sheaf theory, GTM, 170, Springer-Verlag, 1997 | MR | Zbl
[Br] Laufer's vanishing theorem for embedded manifolds, Math. Z, Volume 239 (2002), pp. 863-866 | DOI | MR | Zbl
[G] On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math, Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[HL] On the boundaries of complex analytic varieties I, Ann. of Math, Volume 102 (1975), pp. 223-290 | DOI | MR | Zbl
[HN1] A necessary condition for global Stein immersion of compact manifolds, Riv. Mat. Univ. Parma, Volume 5 (1992), pp. 175-182 | MR | Zbl
[HN2] Duality and distribution cohomology of manifolds, Ann. Sc. Norm. Sup. Pisa, Volume 22 (1995), pp. 315-339 | Numdam | MR | Zbl
[L] On the infinite dimensionality of the Dolbeault cohomology groups, Proc. Amer. Math. Soc, Volume 52 (1975), pp. 293-296 | DOI | MR | Zbl
[N1] On boundary Hilbert differential complexes, Ann. Polon. Math, Volume 46 (1985), pp. 213-235 | MR | Zbl
[N2] Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann, Volume 268 (1984), pp. 449-471 | DOI | MR | Zbl
[NV] Tangential Cauchy-Riemann complexes on distributions, Ann. Mat. Pura Appl, Volume 146 (1987), pp. 123-160 | DOI | MR | Zbl
[Y] Kohn-Rossi cohomology and its application to the complex Plateau problem I, Ann. of Math, Volume 113 (1981), pp. 67-110 | DOI | MR | Zbl
Cited by Sources: