[Sur l'enveloppe d'holomorphie de domaines recouverts par des "chapeaux" Levi-plats et le principe de réflexion]
Dans cet article, nous associons les techniques du principe de réflexion de Lewy-Pinchuk avec celles du principe de continuité de Behnke-Sommer. Après avoir prolongé holomorphiquement une fonction dite “de réflexion” à une congruence de sous-variétés de Segre, nous sommes conduits à l’étude de l’enveloppe d’holomorphie d’un domaine recouvert d’un “chapeau” Levi-plat lisse. D’après notre résultat principal, tout CR-difféomorphisme de classe entre deux hypersurfaces analytiques réelles globalement minimales de () est analytique réel en tout point de si est holomorphiquement non-dégénérée. Plus généralement, nous établissons que la fonction de réflexion associée à un tel difféomorphisme CR de classe entre deux hypersurfaces analytiques réelles globalement minimales se prolonge toujours holomorphiquement à un voisinage du graphe de dans , sans aucune condition de non-dégénérescence sur . Cet énoncé fournit une nouvelle version du principe de réflexion de Schwarz en plusieurs variables complexes. Enfin, nous démontrons que toute application de classe et CR entre deux hypersurfaces analytiques réelles ne contenant pas de courbes holomorphes est analytique réelle en tout point de , sans aucune condition de rang sur .
In the present paper, we associate the techniques of the Lewy-Pinchuk reflection principle with the Behnke-Sommer continuity principle. Extending a so-called reflection function to a parameterized congruence of Segre varieties, we are led to studying the envelope of holomorphy of a certain domain covered by a smooth Levi-flat “hat”. In our main theorem, we show that every -smooth CR diffeomorphism between two globally minimal real analytic hypersurfaces in () is real analytic at every point of if is holomorphically nondegenerate. More generally, we establish that the reflection function associated to such a -smooth CR diffeomorphism between two globally minimal hypersurfaces in () always extends holomorphically to a neighborhood of the graph of in , without any nondegeneracy condition on . This gives a new version of the Schwarz symmetry principle to several complex variables. Finally, we show that every - smooth CR mapping between two real analytic hypersurfaces containing no complex curves is real analytic at every point of , without any rank condition on .
Keywords: reflection principle, continuity principle, CR diffeomorphism, holomorphic nondegeneracy, global minimality in the sense of Trépreau-Tumanov, reflection function, envelopes of holomorphy
Mot clés : principe de réflexion, principe de continuité, difféomorphisme CR, non dégénérescence holomorphe, minimalité globale au sens de Trépreau-Tumanov, fonction de réflexion, enveloppes d'holomorphie
Merker, Joël 1
@article{AIF_2002__52_5_1443_0, author = {Merker, Jo\"el}, title = {On envelopes of holomorphy of domains covered by {Levi-flat} hats and the reflection principle}, journal = {Annales de l'Institut Fourier}, pages = {1443--1523}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1922}, zbl = {1031.32028}, mrnumber = {1935554}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1922/} }
TY - JOUR AU - Merker, Joël TI - On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle JO - Annales de l'Institut Fourier PY - 2002 SP - 1443 EP - 1523 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1922/ DO - 10.5802/aif.1922 LA - en ID - AIF_2002__52_5_1443_0 ER -
%0 Journal Article %A Merker, Joël %T On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle %J Annales de l'Institut Fourier %D 2002 %P 1443-1523 %V 52 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1922/ %R 10.5802/aif.1922 %G en %F AIF_2002__52_5_1443_0
Merker, Joël. On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1443-1523. doi : 10.5802/aif.1922. https://aif.centre-mersenne.org/articles/10.5802/aif.1922/
[A] Extension of CR-functions from piecewise smooth CR manifolds, Mat. Sb., Volume 134 (1987) no. 176-1, pp. 108-118 | Zbl
[A] Extension of CR-functions from piecewise smooth CR manifolds, Math. USSR Sb. (English transl.), Volume 62 (1989) no. 1, pp. 111-120 | DOI | MR | Zbl
[Ar] On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | DOI | MR | Zbl
[BeFo] Local extension of CR functions from weakly pseudoconvex boundaries, Michigan Math. J., Volume 25 (1978) no. 3, pp. 259-262 | DOI | MR | Zbl
[BePi] Analytic continuation of biholomorphic maps, Michigan Math. J., Volume 28 (1987) no. 3, pp. 405-408 | Zbl
[BER1] Algebraicity of holomorphic mappings between real algebraic sets in , Acta Math., Volume 177 (1996) no. 2, pp. 225-273 | DOI | MR | Zbl
[BER2] Real submanifolds in complex space and their mappings (Princeton Mathematical Series), Volume 47 (1999), pp. 404 p. | Zbl
[BER3] Convergence and finite determinacy of formal CR mappings, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 697-723 | DOI | MR | Zbl
[BER4] Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc., Volume 37 (2000) no. 3, pp. 309-336 | DOI | MR | Zbl
[BHR] Regularity of CR mappings between algebraic hypersurfaces, Invent. Math., Volume 125 (1996) no. 1, pp. 13-36 | DOI | MR | Zbl
[BJT] On the analyticity of CR mappings, Ann. of Math., Volume 122 (1985) no. 2, pp. 365-400 | DOI | MR | Zbl
[BR1] Germs of CR maps between real analytic hypersurfaces, Invent. Math., Volume 93 (1988) no. 3, pp. 481-500 | DOI | EuDML | MR | Zbl
[BR2] Geometric properties of mappings between hypersurfaces in complex space, J. Differential Geom., Volume 31 (1990) no. 2, pp. 473-499 | MR | Zbl
[BR3] Cauchy-Riemann functions on manifolds of higher codimension in complex space, Invent. Math., Volume 101 (1990) no. 1, pp. 45-56 | DOI | EuDML | MR | Zbl
[BR4] Mappings of real algebraic hypersurfaces, J. Amer. Math. Soc., Volume 8 (1995) no. 4, pp. 997-1015 | DOI | MR | Zbl
[BT1] A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math., Volume 113 (1981) no. 2, pp. 387-421 | DOI | MR | Zbl
[BT2] About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J., Volume 51 (1984) no. 1, pp. 77-107 | MR | Zbl
[CMS] Holomorphic maps of algebraic CR manifolds, Internat. Math. Res. Notices, Volume 1 (1999), pp. 1-29 | DOI | MR | Zbl
[CPS1] On partial analyticity of CR mappings, Math. Z., Volume 235 (2000), pp. 541-557 | DOI | MR | Zbl
[CPS2] Analyticité des applications CR, C.R. Acad. Sci. Paris, Sér. I Math., Volume 329 (1999) no. 6, pp. 489-494 | DOI | MR | Zbl
[D'A] Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | MR | Zbl
[Da1] Sur l'algébricité des applications holomorphes, C. R. Acad. Sci. Paris, Sér. I Math., Volume 332 (2001) no. 6, pp. 491-496 | MR | Zbl
[Da2] On the analyticity of smooth CR mappings between real analytic CR manifolds, Michigan Math. J., Volume 49 (2001) no. 3, pp. 583-603 | DOI | MR | Zbl
[De] Le principe de réflexion en des points de faible pseudoconvexité pour des applications holomorphes propres, Invent. Math., Volume 79 (1985) no. 1, pp. 197-215 | DOI | MR | Zbl
[DF1] Pseudoconvex domains with real analytic boundary (1978), pp. 371-384 | MR | Zbl
[DF2] Biholomorphic maps between certain real analytic domains in , Math. Ann., Volume 245 (1979) no. 3, pp. 255-272 | DOI | MR | Zbl
[DF3] Biholomorphic mappings between two-dimensional Hartogs domains with real analytic boundaries, Recent Developments in Several Complex Variables (Ann. Math. Studies), Volume 100 (1981), pp. 133-150 | Zbl
[DF4] Proper holomorphic mappings between real-analytic pseudoconvex domains in ., Math. Ann., Volume 282 (1988) no. 4, pp. 681-700 | DOI | MR | Zbl
[DFY] Biholomorphisms in dimension 2, J. Geom. Anal., Volume 4 (1994) no. 4, pp. 539-552 | MR | Zbl
[DP1] Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J., Volume 44 (1995) no. 4, pp. 1089-1126 | MR | Zbl
[DP2] Reflection principle in higher dimensions, ICM, Berlin, Doc. Math. (Proceedings of the International Congress of Mathematicians), Volume Extra Vol. II (1998), pp. 703-712 | Zbl
[DW] A reflection principle for degenerate real hypersurfaces, Duke Math. J., Volume 47 (1980) no. 4, pp. 835-843 | DOI | MR | Zbl
[F] Extending proper holomorphic mappings of positive codimension, Invent. Math., Volume 95 (1989) no. 1, pp. 31-62 | DOI | MR | Zbl
[Ha] Analyticity of CR equivalences between some real analytic hypersurfaces in with degenerate Levi-forms, Invent. Math., Volume 73 (1983) no. 1, pp. 51-69 | DOI | MR | Zbl
[HaTr] Propagation of holomorphic extendability of CR functions, Math. Ann., Volume 263 (1983) no. 2, pp. 157-177 | DOI | MR | Zbl
[HMM] Mappings between degenerate real analytic hypersurfaces in , Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) (Contemp. Math.), Volume 251 (2000), pp. 321-338 | Zbl
[Hu] Schwarz reflection principle in complex spaces of dimension two, Comm. Partial Differential Equations, Volume 21 (1996) no. 11-12, pp. 1781-1828 | MR | Zbl
[J] Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Anal., Volume 6 (1996) no. 4, pp. 555-611 | MR | Zbl
[L] On the boundary behaviour of holomorphic mappings, Contrib. Centro Linceo Inter. Sc. Mat. e Loro Appl., Accad. Naz. Lincei, Volume 35 (1977), pp. 1-8
[Ma] Ideals of Differentiable Functions (Tata Institute of Fundamental Research Studies in Mathematics, Bombay), Volume No. 3 (1967), pp. 106 p. | Zbl
[MaMe] Extension of smooth CR mappings between non-essentially finite hypersurfaces in , Ark. Math., Volume 35 (1997) no. 1, pp. 185-199 | DOI | MR | Zbl
[Me1] Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices (1994) no. 8, pp. approx. 14 p. (electronic) 329-342 | MR | Zbl
[Me2] On removable singularities for CR functions in higher codimension, Internat. Math. Res. Notices (1997) no. 1, pp. approx. 36 p. (electronic) 21-56 | MR | Zbl
[Me3] On the Schwarz symmetry principle in three-dimensional complex euclidean space (1997) (Prépublication Ecole Normale Supérieure, 25, 62 p.)
[Me4] Vector field construction of Segre sets (1998, augmented in 2000) (Preprint 1998, \tt arXiv.org/abs/math.CV/9901010)
[Me5] On the partial algebraicity of holomorphic mappings between two real algebraic sets in the complex euclidean spaces of different dimensions, Bull. Soc. Math. France, Volume 129 (2001) no. 4, pp. 547-591 | Numdam | MR | Zbl
[Me6] Étude de la régularité analytique de l'application de symétrie CR formelle (June 2000) (Preprint, \tt arXiv.org/math/abs/0005290)
[Me7] Convergence of formal invertible CR mappings between minimal holomorphically nondegenerate real analytic hypersurfaces, Int. J. Math. Math. Sci., Volume 26 (2001) no. 5, pp. 281-302 | DOI | MR | Zbl
[Me8] Étude de la régularité analytique de l'application de symétrie CR formelle, C. R. Acad. Sci. Paris, Sér. I Math., Volume 333 (2001) no. 3, pp. 165-168 | MR | Zbl
[Mey] The reflection principle in complex space, Indiana Univ. Math. J., Volume 44 (1995) no. 3, pp. 783-796 | MR | Zbl
[Mi1] An algebraic characterization of holomorphic nondegeneracy for real algebraic hypersurfaces and its application to CR mappings, Math. Z., Volume 231 (1999) no. 1, pp. 189-202 | DOI | MR | Zbl
[Mi2] Germs of holomorphic mappings between real algebraic hypersurfaces, Ann. Inst. Fourier, Volume 48 (1998) no. 3, pp. 1025-1043 | DOI | Numdam | MR | Zbl
[Mi3] On the convergence of formal mappings (To appear in Comm. Anal. Geom.) | MR | Zbl
[Mi4] Formal biholomorphic maps of real analytic hypersurfaces, Math. Res. Letters, Volume 7 (2000), p. 2-3, 343-359 | MR | Zbl
[MM1] Extension de germes de difféomorphismes CR pour une classe d'hypersurfaces analytiques réelles non essentiellement finies dans , Complex variables Theory Appl., Volume 40 (1999) no. 1, pp. 19-34 | MR | Zbl
[MM2] On the Schwarz symmetry principle in a model case, Proc. Amer. Math. Soc., Volume 127 (1999) no. 4, pp. 1097-1102 | DOI | MR | Zbl
[MP1] On removable singularities for integrable CR functions, Indiana Univ. Math. J., Volume 48 (1999) no. 3, pp. 805-856 | MR | Zbl
[MP2] On wedge extendability of CR-meromorphic functions (To appear in Math. Z) | MR | Zbl
[N] On solutions of real analytic equations, Proc. Amer. Math. Soc., Volume 125 (1997) no. 3, pp. 2531-2535 | DOI | MR | Zbl
[P1] A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki, Volume 15 (1974), pp. 205-212 | MR | Zbl
[P2] On proper holomorphic mappings of strictly pseudoconvex domains (Russian), Sibirsk. Mat. Z., Volume 15 (1974), pp. 909-917 | Zbl
[P3] On the analytic continuation of holomorphic mappings (Russian), Mat. Sb. (N.S.), Volume 98(140)-3(11) (1975), p. 375-392, 416-435, 495-496 | MR | Zbl
[P4] Holomorphic mappings of real-analytic hypersurfaces (Russian), Mat. Sb. (N.S.), Volume 105(147) (1978) no. 4, p. 574-593, 640 | MR | Zbl
[Po] Habilitationsschrift (In preparation)
[PV] Analytic sets and the boundary regularity of CR mappings, Proc. Amer. Math. Soc., Volume 129 (2001) no. 9, pp. 2623-2632 | DOI | MR | Zbl
[R] Prolongement holomorphe des fonctions CR, conditions suffisantes, C. R. Acad. Sci. Paris, Sér I Math., Volume 297 (1983) no. 3, pp. 163-165 | MR | Zbl
[Sha] Analytic continuation of germs of holomorphic mappings between real hypesurfaces in , Michigan Math. J., Volume 47 (2000) no. 1, pp. 133-149 | DOI | MR | Zbl
[SS] On CR mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions, Trans. Amer. Math. Soc., Volume 348 (1996) no. 2, pp. 767-780 | DOI | MR | Zbl
[St1] Infinitesimal CR automorphisms of rigid hypersurfaces of the space of n complex variables, Amer. J. Math., Volume 117 (1995) no. 1, pp. 141-167 | MR | Zbl
[St2] Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math., Volume 118 (1996) no. 1, pp. 209-233 | DOI | MR | Zbl
[Su1] On the mapping problem for quadric Cauchy-Riemann manifolds, Indiana Univ. Math. J., Volume 42 (1993) no. 1, pp. 27-36 | DOI | MR | Zbl
[Su2] On CR mappings of real quadric manifolds, Michigan Math. J., Volume 41 (1994) no. 1, pp. 143-150 | DOI | MR | Zbl
[Tr1] Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe dans , Invent. Math., Volume 83 (1986), pp. 583-592 | DOI | MR | Zbl
[Tr2] Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr., Volume 118 (1990) no. 4, pp. 403-450 | Numdam | MR | Zbl
[Tr3] Holomorphic extension of CR functions: a survey, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund 1995) (Progr. Nonlinear Differential Equations Appl.), Volume 21 (1996), pp. 333-355 | Zbl
[Tu1] Extending CR functions on a manifold of finite type over a wedge (Russian), Mat. Sb. (N.S.), Volume 136(178) (1988) no. 1, pp. 128-139 | MR | Zbl
[Tu1] Extending CR functions on a manifold of finite type over a wedge, Math. USSR Sb., Volume 64 (1989) no. 1, pp. 129-140 | DOI | MR | Zbl
[Tu2] Connections and propagation of analyticity for CR functions, Duke Math. J., Volume 73 (1994) no. 1, pp. 1-24 | DOI | MR | Zbl
[Tu3] On the propagation of extendibility of CR functions, Complex analysis and geometry (Trento, 1993) (Lecture Notes in Pure and Appl. Math.), Volume 173 (1996), pp. 479-498 | Zbl
[V] Boundary regularity of correspondences in , Math. Z., Volume 231 (1999) no. 2, pp. 253-299 | DOI | MR | Zbl
[W1] On the mapping problem for algebraic real hypersurfaces, Invent. Math., Volume 43 (1977) no. 1, pp. 53-68 | DOI | MR | Zbl
[W2] On the reflection principle in several complex variables, Proc. Amer. Math. Soc., Volume 71 (1978) no. 1, pp. 26-28 | DOI | MR | Zbl
[W3] Holomorphic mappings of domains with generic corners, Proc. Amer. Math. Soc., Volume 86 (1982) no. 2, pp. 236-240 | DOI | MR | Zbl
Cité par Sources :