[Sur les points d'inflexions évanescents des courbes planes]
Le but de cet article est d’introduire une théorie des formes normales et des déformations des courbes projectives planes qui tienne compte de leurs points d’inflexion. On procède de la façon suivante. Soit un germe de fonction holomorphe avec un point critique à l’origine et son hessien. On étudie l’application en oubliant les relations différentielles entre et . Ceci permet de définir une notion d’équivalence par rapport aux inflexions appelée -équivalence ainsi qu’une notion de déformation verselle par rapport aux inflexions. On montre qu’il existe un seul germe -stable puis on donne la liste des fonctions -simples. À l’aide des techniques introduites, on détermine la stratification par rapport aux inflexions de l’espace des déformations d’un germe -simple.
We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs which take into account the inflection points of the fibres of . We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.
Keywords: Plücker formulas, normal forms, inflection points, bifurcation diagrams, projective geometry
Mot clés : formules de Plücker, formes normales, points d'inflexion, diagrammes de bifurcation, géométrie projective
Garay, Mauricio 1
@article{AIF_2002__52_3_849_0, author = {Garay, Mauricio}, title = {On vanishing inflection points of plane curves}, journal = {Annales de l'Institut Fourier}, pages = {849--880}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {3}, year = {2002}, doi = {10.5802/aif.1904}, zbl = {1116.14301}, mrnumber = {1907390}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1904/} }
TY - JOUR AU - Garay, Mauricio TI - On vanishing inflection points of plane curves JO - Annales de l'Institut Fourier PY - 2002 SP - 849 EP - 880 VL - 52 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1904/ DO - 10.5802/aif.1904 LA - en ID - AIF_2002__52_3_849_0 ER -
%0 Journal Article %A Garay, Mauricio %T On vanishing inflection points of plane curves %J Annales de l'Institut Fourier %D 2002 %P 849-880 %V 52 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1904/ %R 10.5802/aif.1904 %G en %F AIF_2002__52_3_849_0
Garay, Mauricio. On vanishing inflection points of plane curves. Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 849-880. doi : 10.5802/aif.1904. https://aif.centre-mersenne.org/articles/10.5802/aif.1904/
[1] Normal forms for functions near degenerate critical points, the Weyl groups , , and Lagrangian singularities, Funct. Anal. Appl., Volume 6 (1972) no. 4, pp. 254-272 | DOI | MR | Zbl
[2] Mathematical methods of classical mechanics (Nauka) (1974 ; 1978), pp. 462 p | Zbl
[3] Wave front evolution and the equivariant Morse lemma, Comm. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 557-582 | DOI | MR | Zbl
[4] Vanishing inflexions, Funct. Anal. Appl., Volume 18 (1984) no. 2, pp. 51-52 | MR | Zbl
[5] Singularity theory I, dynamical systems VI, VINITI, Moscow (1993), pp. 245 p
[6] The unfolding and determinacy theorems for subgroups of and , Memoirs of the AMS, Volume vol. 50 (1984) | MR | Zbl
[7] Théorie des points d'aplatissement évanescents des courbes planes et spatiales (2001) Thèse, Université de Paris 7, février (in English)
[8] On simple families of functions (2002) (Preprint Mainz Universität)
[9] Vector fields and functions on discriminants of complete intersections and bifurcation diagrams of projections, Funct. Anal. Appl., Volume 15 (1981), pp. 77-82 | Zbl
[10] Principles of algebraic geometry, Wiley Interscience, 1978 | MR | Zbl
[11] Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, Itogi Nauli Tekh., Ser. Sovrem Probl. Math., Noviejshie dostizh., Volume 33 (1988), pp. 215-234 | Zbl
[11] Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, J. Soviet Math. (English transl.), Volume 52 (1990), pp. 3338-3349 | Zbl
[12] Bifurcations of flattening and Schubert cells (Advances Soviet Math. I) (1990), pp. 145-156
[13] Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Usp. Mat. Nauk, Volume 46 (1961) no. 5, pp. 79-119 | Zbl
[13] Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Russ. Math. Surveys (English transl.), Volume 46 (1992) no. 5, pp. 91-136 | DOI | Zbl
[14] Development of mathematics in the XIXth century, Lie groups history, frontiers and applications, Volume vol. 9 (1979), pp. 630 p. | Zbl
[15] Singularities of smooth functions and maps, London Math. Soc. Lecture Notes Series, vol. 58, Cambridge University Press, 1982 | MR | Zbl
[16] Stability of mappings, I, Ann. of Math., Volume 87 (1968) | MR | Zbl
[16] Stability of mappings, III, Pub. Sci. IHES, Volume 35 (1969) | Numdam | Zbl
[16] Stability of mappings, II, Ann. of Math., Volume 89 (1969) | MR | Zbl
[16] Stability of mappings, IV, Pub. Sci. IHES, Volume 37 (1970) | Numdam | Zbl
[16] Stability of mappings, V, Adv. in Math., Volume 4 (1970) | MR | Zbl
[16] Stability of mappings, VI, Lecture Notes in Math., Volume 192 (1971) | DOI | MR | Zbl
[17] System der Analytischen Geometrie, Gessam. Wissen. Abhand., vol. Band 1 ; vol. 2, B.G. Teubner, 1834, 1898
[18] Numerical characters of a curve in projective n-space, Real and complex singularities (1977), pp. 475-495 | Zbl
[19] Locally semi-universal plane deformations of isolated singularities in complex space, Math. USSR Izv., Volume 32 (1968) no. 3, pp. 967-999 | Zbl
[20] Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces (2001) (Thèse Université de Paris 7)
[21] Lagrangian and Legendrian singularities, Funct. Anal. Appl., Volume 10 (1976) no. 1 | Zbl
Cité par Sources :