[Sur les inégalités exactes pour les fonctions conjuguées]
Nous donnons une méthode pour la construction des fonctions et telles que aî t une minorante sousharmonique spécifiée. D’après un théorème de B. Cole, ce procédé établit des inégalités d’intégrales pour les fonctions conjuguées. Nous appliquons cette méthode pour déduire des inégalités optimales pour les conjuguées des fonctions de la classe , pour . En particulier, le cas procure une amélioration de la version de Pichorides de l’inégalité classique de Zygmund pour les conjuguées des fonctions de . Nous appliquons aussi cette méthode pour obtenir une nouvelle preuve de l’inégalité de M. Riesz pour les fonctions de (), avec meilleure constante. Toutes ces inégalités sont des cas spéciaux d’une inégalité générale et optimale pour les fonctions conjuguées (cf. Théorème 6).
We give a method for constructing functions and for which has a specified subharmonic minorant . By a theorem of B. Cole, this procedure establishes integral mean inequalities for conjugate functions. We apply this method to deduce sharp inequalities for conjugates of functions in the class , for . In particular, the case yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the conjugates of functions in . We also apply the method to produce a new proof of the M. Riesz’s inequality for functions in , , also with sharp constant. All these inequalities are special cases of a general sharp inequality for conjugate functions (cf. Theorem 6).
Keywords: conjugate functions, norm estimates, minimal thinness
Mot clés : fonctions conjuguées, estimation des normes, effilement minimal
Essén, Matts 1 ; Shea, Daniel F. 2 ; Stanton, Charles S. 3
@article{AIF_2002__52_2_623_0, author = {Ess\'en, Matts and Shea, Daniel F. and Stanton, Charles S.}, title = {Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions}, journal = {Annales de l'Institut Fourier}, pages = {623--659}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {2}, year = {2002}, doi = {10.5802/aif.1896}, zbl = {1053.42012}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1896/} }
TY - JOUR AU - Essén, Matts AU - Shea, Daniel F. AU - Stanton, Charles S. TI - Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions JO - Annales de l'Institut Fourier PY - 2002 SP - 623 EP - 659 VL - 52 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1896/ DO - 10.5802/aif.1896 LA - en ID - AIF_2002__52_2_623_0 ER -
%0 Journal Article %A Essén, Matts %A Shea, Daniel F. %A Stanton, Charles S. %T Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions %J Annales de l'Institut Fourier %D 2002 %P 623-659 %V 52 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1896/ %R 10.5802/aif.1896 %G en %F AIF_2002__52_2_623_0
Essén, Matts; Shea, Daniel F.; Stanton, Charles S. Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 623-659. doi : 10.5802/aif.1896. https://aif.centre-mersenne.org/articles/10.5802/aif.1896/
[1] Potential Theory - Selected Topics, Springer Lecture Notes in Mathematics, Volume 1633 (1996) | MR | Zbl
[2] Sharp inequalities for martingales with applications to the Beurling--Ahlfors and Riesz transforms, Duke Math J., Volume 80 (1995), pp. 575-600 | MR | Zbl
[3] An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc., Volume 17 (1985), pp. 474-478 | DOI | MR | Zbl
[4] Explorations in Martingale Theory and its applications, Springer Lecture Notes in Mathematics, Volume 1464 (1989), pp. 1-66 | DOI | MR | Zbl
[5] The Theorem, Springer Lecture Notes in Mathematics, Volume 467 (1975) | MR | Zbl
[6] A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Mat., Volume 22 (1984), pp. 241-249 | DOI | MR | Zbl
[7] Harmonic majorization, harmonic measure and minimal thinness, Springer Lecture Notes in Mathematics, Volume 1275 (1987), pp. 89-112 | DOI | MR | Zbl
[8] Some best constant inequalities for conjugate functions (International Series of Numerical Math.), Volume 103 (1992), pp. 129-140 | Zbl
[9] A value-distribution criterion for the class and some related questions, Ann. Inst. Fourier, Grenoble, Volume 35 (1985) no. 4, pp. 127-150 | DOI | Numdam | MR | Zbl
[10] Some best constant inequalities of type (Inequalities and Applications), Volume 3 (1994), pp. 233-239 | Zbl
[11] Near Integrability of the conjugate function, Complex Variables, Volume 37 (1998), pp. 179-183 | MR | Zbl
[12] Best constant inequalities for conjugate functions, J. Comput. Appl. Math., Volume 105 (1999), pp. 257-264 | DOI | MR | Zbl
[13] Best constants in Zygmund's inequality for conjugate functions, A volume dedicated to Olli Martio on his 60th birthday, Volume 83 (2001), pp. 73-80 | Zbl
[14] Uniform algebras and Jensen measure, London Math. Soc. Lecture Note Series, 32, Cambridge University Press, 1978 | MR | Zbl
[15] Subharmonic functions I, Academic Press, 1976 | Zbl
[16] Riesz transforms and related singular integrals, J. Reine Angew. Math., Volume 473 (1996), pp. 25-57 | MR | Zbl
[17] Integral estimates for null Lagrangians, Arch. Rational Mech. Anal., Volume 125 (1993), pp. 25-79 | DOI | MR | Zbl
[18] On the best value of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math., Volume 44 (1972), pp. 165-179 | MR | Zbl
[19] Sur les fonctions conjugées, Math Z., Volume 27 (1927), pp. 218-244 | DOI | JFM | MR
[20] On a theorem of M. Riesz, J. London Math. Soc., Volume 8 (1933), pp. 242-247 | DOI | Zbl
[21] An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts (Mat. Issled. Vyp.), Volume 54 (1980), pp. 16-20 | Zbl
[21] An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts, Amer. Math. Soc. Transl. (2), Volume 124 (1984), pp. 11-15 | Zbl
[22] Sur les fonctions conjugées, Fund. Math., Volume 13 (1929), pp. 284-303 | JFM
[23] Trigonometric Series, Cambridge University Press, 1968 | MR | Zbl
Cité par Sources :