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SHARP L log03B1 L INEQUALITIES FOR
CONJUGATE FUNCTIONS

by M. ESSÉN, D.F. SHEA &#x26; C.S. STANTON

1. Introduction.

Suppose f is a real-valued harmonic function on the unit disc D C C
such that

1 e~.~ .... 1 /~ ,

Let / be the harmonic conjugate of f, normalized so that /(0) = 0, and
F = f + i f . Then, by a famous theorem of M. Riesz [19], if 1  p  oo,

S. K. Pichorides [18] determined the sharp constants cp in (1.1) : cp = tan ’
for 1  p  2 and cp = cot £ for p &#x3E; 2. In the same paper, Pichorides

proved that for any A &#x3E; 2/7r there exists a B depending only on A such
that

giving the best constant in a theorem originally due to Zygmund [22]. The
sharp constants in (1.2) are (cf. Ess6n [6], Verbitsky [21] ) Cp = sec(7r/2p)

Keywords: Conjugate functions - Norm estimates - Minimal thinness.
Math. classification: 42A50 - 30D55 - 31A15.
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The class L log L is defined to be those functions harmonic on the
unit disc such that

We will also work with the classes L log’ L of harmonic functions on the
disc such that

and L log log L of functions with

Remark. - Of course, none of these is actually a norm. We note
that for any real cx and b &#x3E; 0 there exist positive constants C(a, b) such
that for any x &#x3E; e + b,

so that our choice of e + If f in these definitions is largely one of convenience.

About the same time as Pichorides did his work, B. Cole also found
the sharp constants in the hP inequalities, while also providing a general
framework for finding the best constant in many such inequalities. His
theorem is (see [14]):

COLE’s THEOREM. - Let H : C - R be a continuous function.

Then

for all harmonic polynomials f with normalized conjugates f if and only if
H has a subharmonic minorant h such that h is non-negative on the real
axis.

Using Cole’s theorem, the problem of finding a sharp inequality be-
comes one of determining which functions H have subharmonic minorants
with the desired positivity on the real axis. However, determining whether
or not a given H has such a subharmonic minorant may be difficult. Our
idea in this paper is to start with an appropriate subharmonic function h,
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and then try to determine the optimal (minimal) H having h as a mino-
rant. The subharmonic functions h we start with are of a very particular
form, motivated by the simple choices of h and H used for the special
case of Cole’s proof of Riesz’s LP-inequality. These functions are harmonic
splines formed by joining two harmonic functions along the imaginary axis.
We then find a function H(x, y) = which is minorized by h.
This function H is chosen so that H - h vanishes to first order on the

curve where h = 0. Note that if h is harmonic and H subharmonic on the

curve where h = 0, then this first order vanishing ensures that h  H in a
neighborhood of h = 0.

In most cases the inequality we obtain by this method will involve
implicitly defined functions, which we will have to approximate to obtain a
more useful explicit inequality. After stating and proving our basic theorem
(Theorem 6 below), we give applications. The first of these will show how
Pichorides’ sharp form of Riesz’s inequality ( 1.1 ) follows from our methods.
Our main applications yield new results for L log’ L inequalities. We note
that, unlike our earlier results in [8] and [10], in all cases the right hand
sides of our inequalities depend only on If and not on If 1. We prove

THEOREM 1. - Suppose that F = f +il is analytic in the unit disc
D and that a &#x3E; 1. Then there are positive constants CI and C2 depending
only on a such that

Moreover, the constants a and ~ in (1.6) are sharp.

Remark. - We can choose Ci = 0 for for

1  a  ao, where ao = 2.916 ... is the solution - 

This theorem extends a result from [10], where the authors showed
that a was the appropriate leading constant in a version of (1.6) for

1  a  2 where the error term depended on If 1. Here and below, integrals
over ~0, 2~r~ are taken with respect to normalized Lebesgue measure dO

For the a = 1 case, we offer
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THEOREM 2. - Suppose that F = f + if is analytic in the unit
disc D. Then there are positive constants ~’1 and ~‘2 such that

-v -v

The constant 2 in (1.7) is sharp, and the constant cannot be replaced
b,~ a constant less than 2.

This theorem improves the result (1.3). In [18], Pichorides proves that
the constant A in (1.3) cannot be reduced to 1 even if an error term using
the h’ norm of f is introduced. Our theorem shows that is the

appropriate error term in the sharp form of Zygmund’s inequality.

Remark added October 19, 2001. Using a different method, we can now
prove that the constant ( in the right hand side of (1.7) can be replaced
by 2 (with a somewhat different error term) and that also this constant is
best possible (cf. [13]).

For 0  Q  1 we have

THEOREM 3. - Suppose that F = f + if is analytic in the unit
disc D and that 0  a  1. Then there are positive constants CI and C2,
depending only on a, such that

Moreover, the constant a is sharp.

We need the following result for the proofs of Theorpm 2 and Theo-
rem 3. This theorem may be regarded as the a = 0 case of the theorems
above:

THEOREM 4. - Suppose that F = is analytic in the unit disc
D. Then there is an absolute constant C such that

Moreover, the constant 1 is sharp.
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Remark. - Inequality (1.9) is a candidate for the "true form" of a
limiting case of certain inequalities considered by Zygmund (let (3 --&#x3E; 0 in

(7.7) below!) (cf. [11]).
We can also prove a result giving inequalities for IFI. In the case that

a &#x3E; 0, it turns out that we get the same inequalities as for If 1:

THEOREM 5. - Theorems 1, 2 and 3 remain true if f ( is replaced
by IFI.

A survey of our results is given in [12]. Orlicz spaces of type L log" L
arise naturally in many settings in analysis. The reader is urged to compare
our results with recent papers on sharp inequalities for Riesz transforms on
R’ by Iwaniec and Martin [16] and by Banuelos and Wang [2], for instance.
Interesting related results are due to Burkholder (cf. [3] and [4]).

2. Functions with a specified subharmonic minorant.

We begin by constructing a subharmonic function h on the complex
plane C of a particular form. This is done by forming a harmonic spline
from the real part g of an analytic map G = g + ig on the right half-plane
II+ _ ~z ~ I Re z &#x3E; 01. We will assume that G extends to be analytic on
a neighborhood of the imaginary axis with the origin omitted, and that

G(0) = 0. For z = x + iy E C, we define

The properties we require G to have are collected in the following list:

HYPOTHESES. - We assume that the function G is an analytic
function on a neighborhood of the set II+ B 101 and that

G maps the positive real axis onto itself,

x(2) G’ maps the first quadrant to the first quadrant,

x(3) G" maps the first quadrant to the lower half plane,

H(4) Let -y be the part of the curve defined by Re G(x -~ iy) = 0 in the first
quadrant. For each x &#x3E; 0 there is a unique V(x) such that (x, y(x)) is
on -y, and for each y &#x3E; 0 there is a unique x(y) such that (I(y), y) is
on -y .

H(5) If h is defined by (2.1) then h is subharmonic in the complex plane C.
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Remark. - Since G is real on the real axis, G(z) = G(z). Assump-
tion ~(2) is equivalent to requiring that if g = Re G then Dlg(x, y) &#x3E; 0

and D2g(x, y)  0 in the first quadrant. (We will systematically use the
notation Dlg(x, y) = a g(x, y) and D2g(x, y) - y).) Assumption
H(3) is equivalent to requiring DID2g(x, y) &#x3E; 0 in the first quadrant. By
assumption H(4), the curve 7 is non-empty, and by assumption H(2), l is
the graph of a monotone increasing function. The function h is harmonic

(and hence subharmonic) everywhere except on the imaginary axis. The
derivative condition in assumption H(2) ensures that near the imaginary
axis h is, except possibly at 0, locally the maximum of two harmonic func-
tions. Hence h is subharmonic on the imaginary axis except possibly at
the origin. Thus, H(5) reduces to a requirement on the integral means of
h near 0.

We define, assuming that the derivatives are integrable at 0,

If -y is defined as in x(4) we have

Proof. - It suffices to prove that ~(x) - on ~y. This is true,
since ~(0) = ~(0) = 0, and

The vanishing of the gradient is immediate from (2.2) and (2.3). 0

THEOREM 6. - Suppose G = g -f- i§ satisfies the hypotheses 
H(5), and that o and V) are defined by (2.2) and (2.3) respectively. Then
for any analytic polynomial F = f + i f with /(0) = 0,
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Remark. - Inequality (2.4) is best-possible for a class of functions
G satisfying some additional regularity conditions. This class contains all
functions G used in the proofs of Theorems 1-5. See Theorem 8 in Section 9
below.

Proof. - Let H(z, y) = §(z) - 0(y). It suffices, by Cole’s theorem,
to show that h minorizes H. The functions H and h depend only on lxl
and so it suffices to show that H - h &#x3E; 0 in the first quadrant. We fix
xo &#x3E; 0, and calculate

for some ~ between xo and x(y). By our hypothesis H(3), 0 in the

first quadrant. Since 7 is the graph of an increasing function of x, x(yj - xo
has the same sign as y - V(xo). From this it follows that H(xo, y) - h(xo, y)
has a minimum at y = y(xo), i.e., on the curve 7. By Lemma 1, we conclude

0

We can also formulate a theorem for comparing the means of the

analytic function F to those of its real part f. For other recent work on

IFI vs. 1ft inequalities, see [2]. We introduce some more notation. Let 7 be
a curve in the first quadrant such that any positive value of either of x or
r determines a unique point x + iy = reio on the curve 7. We write 

r(x), and for the values determined by x, and x* (,r), y*(r), and 0* (r)
for those determined by r.

If G is an analytic function with a real part g which vanishes on
such a curve ~y, we wish to define functions 4D(x) and Q(r) such that
4l(z) - ~(r) - g(x, y) vanishes to first order on 7. To do this, we define,
assuming that the derivatives are integrable at 0,

and
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Proof - We calculate the partial 8(H - g)/8x at a point (x, y)

THEOREM 7. - Let T and ~ be defined by (2.5) and (2.6) respec-
tively. Suppose that in addition to hypotheses x(1) x(5), the function
g = Re G(x + iy) satisfies in the first quadrant

Then for any analytic polynomial .

Proof. We calculate at a point : in the first quadrant:

is negative if y  y(x), and positive if y &#x3E; y(x). We conclude that for a
fixed x that ~(r) - w(y) - g(x, y) has a minimum if y = y(x), i.e., on q.
Since this difference is zero on ~, it is positive everywhere else. 0
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3. Pichorides’ theorem.

Our first application of Theorem 6 gives an alternative proof (for
1  p  2) of Pichorides’ theorem giving the best constants in M. Riesz’s
theorem. We use the same subharmonic minorant as Pichorides, but avoid
having to derive some trigonometric inequalities by using our Theorem 6.
We take G(z) = zr. It is easily checked that G satisfies the hypotheses of
the theorem. We first calculate that G’(z) = and so Re G’ (reZe ) =
PrP-1 cos ((p - 1)0) where r = z ~ and 0 = arg z. To calculate in order
to apply Theorem 6, we note that on the curves iz : Re zP = 0} in the
first quadrant, we have Hence,

Integrating with respect to x gives

and, similarly,

We conclude from Theorem 6 that, if f is a harmonic polynomial with
conjugate f normalized so that f(0) = 0,

This is easily seen to reduce to Pichorides’ theorem.

It is not difficult to construct examples to show that cp = 
is the sharp constant for 1  p  2 (see [18], [14]). Another way to
prove that this constant is sharp is via Cole’s theorem. For if c  cp
and 7;f,?/) = then H vanishes on the rays y - in

the right half-plane. These rays form a sector with an angle of less than
The maximum principle applies (by a Phragm6n-Lindel6f argument)
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to any subharmonic function in this sector of growth Thus, any
subharmonic minorant of H must be non-positive in this sector. Since
H  0 in the rest of the half-plane, the minorant must be  0 in the
half-plane. The same argument applies in the left half-plane, and hence
the minorant must be constant. However, H(0, y) - -oo as Iyl - oo, so
this is impossible. We conclude that H has no subharmonic minorant, and
hence by Cole’s theorem that (1.1) cannot hold for this value of c.

Starting with G(z) = zP and 1  p  2, we can also apply Theorem 7.
The definitions (2.5) and (2.6) give

and

We apply Theorem 7 and simplify to recover (1.2) in the case 1  p  2:

4. Conjugate function inequalities.

Our main application of Theorem 6 deals with conjugate function
inequalities for functions in the class L log~ L, 0  a  oo. For this, we
study the basic mapping properties of the functions defined on II+ :

as well as

Remark. - In the proof of Theorem 5, b is chosen differently.

LEMMA 3. - For any 0, Go: satisfies hypotheses ?~ ( 1 ) ~-l (5) .

Proof We will use the following notation throughout this paper:
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Condition 7~(1), that ~a map the positive real axis to itself, is obvious,
for any 0. Now, take a &#x3E; 0. For H(2), we observe that arg(Ga) = as.
Using our choice b = ea, we see that for z E Q = y &#x3E; 0},

as required.

In fact, the negativity is immediate if a  1. For a &#x3E; 1, we have

,-- /

The right-hand inequality in (4.5) follows easily from (4.4) in both cases.

The validity of hypothesis ~-C(4) is a consequence of the the fact

that y(0) - 0, that V’(x) &#x3E; 0 which follows from 7~(2), and the estimate
x  y(x)  Cx log x for large x which follows from Lemma 6 below.

Finally, ?-~(5) follows easily from analyticity of Ga (z) at 0, with

so that

must satisfy the mean value inequality for subharmonicity at 0.

To check H(2)-H(5) for Go, we use the notations (4.3) but now take
b = e. Since

7~(2) follows. For H(3), observe that

since E (0, ).2
The validity of hypothesis H(4) is obtained as in the case a &#x3E; 0, this

time using Lemma 8.

To check the behavior of h near 0, we use
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to see that

and thus the required mean-value inequality holds, since

where a3 = -1/3e2 is negative.

5. The curve q = fRe G, - 0}.

The inequality (2.4) for 0-means of f and V)-means of f given
by Theorem 6 is useful only if 0 and 0 closely approximate interesting
functions. For instance, in (5.19) below we establish the approximation

when cx &#x3E; 0. A similar expansion for O(y) is given in (5.21), and the case
a = 0 is treated in Section 6. These estimates depend on the properties of
the level curve q = fRe G,, - 0~.

In this section we assume a &#x3E; 0 and study the asymptotic behavior
of Ga defined in (4.1). Clearly Ga is univalent on and each 

contains II+ B {0}. Thus, we can define the analytic curve

with x and y positive, smooth functions of v. To get good estimates on q,
it is useful to consider its image a in the p - p plane,

with a(0) = log b = a. Then

so that by (5.1) and (4.3) we obtain, for p + i~p on 0",
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where ~ are all

smooth functions of v. Taking the real and imaginary parts, we see that

It follows from (4.4) that 0~+o~2~7r, and so it is clear that we
can consider v an increasing function of p. In turn, we can regard p, t, s,
x, and y as functions of p, and from (5.3) we conclude that p satisfies the
differential equation

We denote the solution to (5.4) by ~b, and arctan by s.

LEMMA 4. - Suppose a &#x3E; 0. The function cp = cp(p) defined in
(5.4) satisfies

Thus, by (5.4), ø is strictly increasing for all p &#x3E; a and Sp(p) -~ 7r/2, p --+ oo.

Proof - We put l~(cp, p) _ and consider

the region

Note that k increases in cp, for each p &#x3E; a, and

so that  0. Further,

since For each p &#x3E; a, define

by k (~p 1 (p), p) = 7r / 2 and notice that &#x3E; 0. A simple comparison
argument will show that §3(p) satisfies

for a  p  po. Now suppose there is a p
be the first such p. Then = 0, while
for some p  pl , a contradiction.
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We now proceed to make estimates on the solution cp(p) . For (p, p) =
(~b(p), p), we write

and note that h(p) &#x3E; 0. Thus the nonlinear differential equation (5.4)
becomes a less explicit linear differential equation:

, I I I

This first-order linear differential equation has the solution

The first integral we integrate by parts. Writing hi(p) for the second

integral, we obtain

, n . w · i i

Here, and in the remainder of this section, all 0 statements for functions of

p are to be taken as p - oo. Since h(p) &#x3E; 0, we see that 1r/2 - Sp = O(1/p),
and hence h ( p) = This in turn implies that = and

we have the following

LEMMA 5. - Suppose that a &#x3E; 0 and that the curve 0" is defined

by (5.2) in the first quadrant. Then for p + icp E 0" we have, as p - oo,

and since s = arctan(p/p) ,

We can now estimate the values of x and y on the curve q. We have
4"B t"B ,, ,
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and

- ,- , ,

From these, we obtain asymptotic estimates for p:

LEMMA 6. - Suppose a &#x3E; 0 and that the curve -y is defined by
Re = 0 in the first quadrant. Then

and

Proof. - From (5.9) we have
I , ’1

and hence

since log y  log R, and thus we have (5.12).
To prove (5.11), we start with (5.10), and obtain

and hence

To eliminate the log p term from the right side, we use 1/p ~ 1 / log x, and
see that 

, - , , ,

from which it follows that
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From this we deduce

Substituting this estimate into (5.13), we have (5.11). 0

We now obtain bounds for the functions O(x) and It follows

from the definition (2.2) of ~p that

We observe that

and that by (5.8), cos as = 1 + 0 ( 1 /p~ ) , We deduce that

We now estimate

It follows from (5.15), (5.16), and (5.17) that 0’ satisfies the same estimate
as p’:

It follows that

For 0 (y), we have i sin as, and deduce

that

and thus

It follows by an integration by parts that
,- , ,
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6. The case a = 0.

We now consider the case a = 0. In analogy to the a &#x3E; 0 case, we

parameterize the curve, by the inverse function with 0  v  oo,

and consider the image ao of q in the p-~p plane, defined by the equation

Then

We introduce the notation log(teis ) = Àeiç. Then, substituting .
and using the notation (4.3),

Taking the ratio of imaginary and real parts, this time we get the differential
equation

Since ~ = arctan(s/ log t), we may linearize this as

It follows, as in the case for a &#x3E; 0, that (6.3) has a solution cp given by

from which follows the analog of Lemma 5:

LEMMA 7. - Suppose 7o is defined by (6.1) in the first quadrant.
Then for p E c~o we have, as p -~ oo,

for s = 
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and for ~ = arctan(s/ log p)

We deduce that on the curve ’Y
/ .

and

and hence

and

We can solve these for p as in Lemma 6, and obtain

LEMMA 8. - Suppose ~ is defined by Re Go - 0 in the first

quadrant. Then on q,

We can now obtain bounds on §(z) and 0(y). Recall that 0’(x) --
and observe that

1 ,,

and that i by Lemma 7. Thus, we have
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From this, we conclude that

For 0, we have

and hence

7. Proofs of conjugate function inequalities.

In this section we prove the inequalities stated in our Theorem 1-
Theorem 4. The sharpness assertions are discussed in Sections 9 and 10.

By Theorem 6 and Lemma 3, if 0 and 0 are defined by (2.2) and (2.3)
respectively, with G = Ga defined by either (4.1) or (4.2), then

j u j u

We now use the estimates derived for 0 and V) in Sections 5 and 6 to prove
the more explicit theorems stated in Section 1. In writing integrals over the
unit circle like (7.1), we shall sometimes delete the limits 0 and 21r.

We first prove Theorem 4. We deduce from (6.9) that there is a

constant BI such that

It follows from (6.10) that there is a constant B2 such that

and now (7.1) implies
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Now we consider the case a &#x3E; 0. We deduce from (5.21) that there
are non-negative constants cl and c2, depending on a, such that

We deduce from ( 5 .19 ) that

where q is any constant less than log 11 and c3 depends on only on cx and 77.
Then (7.1) implies _

J

where c4 = G2 + 2C3.
To prove Theorems 1, 2, and 3 we must estimate the integrals of the

conjugate function f which appear on the right-hand side of (7.6). To do
this, we consider the cases a  1, a = 1 and a &#x3E; 1 separately.

Suppose first that a &#x3E; 1. Then {3 = a - 1 &#x3E; 0 and we can apply the
inequality

where Ao is any constant larger than 2 and Bo depends on A,3. With
other (larger) A,3, this is classical (cf. [11]). With {3 = 1, this is Pichorides’
inequality (1.3).

The proof of (7.7) is a simple application of our estimates. Let a &#x3E; 1

be given and use (7.4),(7.5) to deduce that there are constants C5, C6 only
depending on,3 and a such that
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. , " ’-’,,,-,

for all x &#x3E; 0, y &#x3E; 0. Then (7.7) follows from (7.1).

Returning to our estimate (7.6) with a &#x3E; 1, we first absorb the last
term in the right hand side into the previous two terms by increasing c4
and the coefficient (2a - 1), and then use (7.7) to obtain (1.6) with

where E’ 2013~ 0 0 and 71 ~ 

Let ao - 2.916 ... be the root of

-L i

given a &#x3E; ao, we can find constants &#x3E; 0 and c4 so that (1.6) holds with
0. For 1  a  ao, we may as well take CI == ~~...
To prove Theorem 2, we start from (7.6) with a - 1, and use

Theorem 4 to estimate the next-to-last term. Thus

To complete our proof, we rewrite the last integral above in terms
of the distribution function where I is

normalized Lebesgue measure on the circle (rn(0) = 1). Thus

where we have used Kolmogorov’s estimate with e.g. A  2

(cf. [14]). This completes the proof of ( 1.7) .
Now suppose that 0  cx  1 and rewrite (7.6) as

- I - /-. B I
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where c7 depends only on a. We have already estimated the last term in
(7.9) and a similar argument shows that (1.8) holds with

, -- / 
- --

where c8 is bounded for 0  a  1.

8. Proof of Theorem 5.

We will now prove Theorem 5 giving inequalities between F ! and If 1.
We will need the following

LEMMA 9. - Let cx &#x3E; 0. Then Go satisfies (2. 7) if b = b(a) is chosen
sufficiently large.

We will first prove Theorem 5 before giving the proof of the lemma.
We note that Go satisfies 7~(1) - 7~(5) for any b &#x3E; e" and thus Theorem 7

is available.

The essence of the proof that follows is that T(r) and -4~(x) differ
only in lower order terms from and O(x), so that the statement of the
theorems for ~F~ vs. are unchanged (cf (8.3) below). By (2.5) and (4.1),

with t, s, and 0 defined by (4.3) evaluated at z = x* (r) + iy*(r). On the
curve q, we have by (5.12) that p = log y + as y - oo. Since

p = log R and y  r  R, this implies that on q,

We also deduce from Lemma 5 and the obvious fact that 0 that

It now follows that w’(r) satisfies the same estimate in r that (5.20) gives
for 1jJ’(y) in the variable y, and hence that W(r) satisfies (5.21) with y
replaced by r and ab replaced by T.

We now turn to estimating ~(x). Applying the definition (2.6) gives
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with t, s, and 0 evaluated at (x, y(x). Since 0 &#x3E; p we have cos 0  cos cp =

O(1/p), and we also have sin as = O(1/p) by (5.8). Hence,

I 

and thus -4~’(x) satisfies the same estimate (5.18) as 0’(x). also

satisfies (5.19) with 0 replaced by ~. Since ~(x) and W (r) satisfy the same
estimates as §(z) and 0(y) respectively, we can use the argument in Section
7 to prove the inequalities in Theorem 5 with b replaced by b(a) It is now
easy to prove Theorem 5 as stated by using inequality (1.4). Since if 1,
the sharpness in Theorem 1 implies the inequality here must also be sharp.

Proof of Lemma 9. - We need to show that t’ sin as csc 0 is

increasing in 0 for 0  0  7r/2. We first note that, using the notation
of (4.3),

and thus

It also follows from (4.3) that t = pl cos s = ’P/ sin s, and hence we may
write

We require one further consequence of (4.3),

which is obtained by differentiating the identity log r + log(sin 0) = p +
log(sin cp) with respect to B. We then calculate

which by ( 8 .10 ) gives

Meanwhile,
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where

q(s) = (a - 1) tan s + a cot as - cot

for some C &#x3E; ~ ( a -1 ) ( 2 - and 0  s  B ( C) . It now follows from (8.8),
(8.9), (8.11), (8.12), and (8.13) that

We note that s p  p and hence both bracketed terms are positive if p is

large enough,which will be the case if b is chosen sufficiently large. Thus,
by (8.6) and (8.7), go log (to sin as (sin 0) -’) &#x3E; 0 if b = b(a) is chosen

sufficiently large. This finishes the proof of Lemma 9. 0

9. A general result on sharpness.

Let G be an analytic function in II+ - ~Re z &#x3E; 01 satisfying the
hypotheses in Section 2. We note that it follows from our assumptions that
G(z) defines a conformal mapping of

onto II+ .

We can prove that Theorem 6 is best possible in the case when G’(z)
"behaves like a logarithm" in the following sense: we assume that
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is decreasing when y is large.

It is clear that these assumptions hold when G = Go , 0.

THEOREM 8. - Assume that E = 1-1+ B Q is not minimally thin at
infinity in n~. Then (2.4) is best possible in the sense that for any e &#x3E; 0,
no inequality of the form

can hold for all analytic polynomials f + i f with f (0) = 0.

In the proof, we shall use Cole’s theorem. A simple argument of this
type, using a classical Phragm6n-Lindel6f theorem, can be found in Section
1 in [12] (cf. also Section 3 in the present paper). To deduce a more general
theorem of Phragm6n-Lindel6f type, to be used in the proof of Theorem 8,
we need some results on minimal thinness.

As a general reference on minimal thinness, we use the lecture notes
[1] of Aikawa and Ess6n. The set E in Theorem 8 will be minimally thin
at infinity with respect to 11~ if and only if

r o0

io

(cf. Theorem 15.1, p. 82 or Corollary 7.4.6, p. 158 in [1]).
If we write , an equivalent condition is

given by

Remark. - To explain the equivalence, we note that it follows from
our conditions that dr = + o( 1 ) ) as y -~ oo along ~y (cf. (9.16)).

LEMMA 10. - If E is not minimally thin at infinity in II+ and h is
a minimal harmonic function in S2 with pole at infinity, then

Proof. We start by observing that since h is positive in S2 with

boundary values zero and Q is symmetric with respect to R, we have
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This follows from a *-function argument similar to the one used in the

proof of Lemma 9.2, p. 88, in [5].

Let w$ be the harmonic measure of

LEMMA A. - A necessary and sufhcient condition for E not to be

minimally thin at infinity in II+ is that for all z E Q, we have

For the proof, we refer to Lemma 2 in [7].
If (9.10) is false, there exists a sequence increasing to infinity

and a constant A such that h(t) , At, t E Using (9.11) and the
maximum principle, we deduce that

It follows from (9.12) that

This is impossible and we have proved that (9.10) holds which concludes
the proof of Lemma 10. 0

Let 6’ &#x3E; 0 be given. We shall study the curve

and the domain

LEMMA 11. - Assume that E is not minimally thin at infinity
in H+. Then Q B OE is not minimally thin at infinity in Q.

Proof. Since minimal thinness is conformally invariant, it suffices
to prove that G(Q B OE) is not minimally thin at infinity in II+.

We work in the first quadrant. From (9.1), we see that

in both cases when z --&#x3E; oo in 11~. On ’1, we have
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If z = x + iy = reiO, it is easy to see that

We claim that §(z) is a convex function. Let z = x + iy E ~. According to
the proof of Theorem 6, the function

has a minimum at x. It follows that

(cf. (9.4)) which proves the claim.

Let z = x + iy and Z - X + iY be the points of intersection
of a circle of radius r centered at the origin and the curves ~ and ^~,,

respectively. We write X + iY = where A0  0. We note that

z = = i(y) + iy. In the following discussion, we always let z - o0
along -y.

Let us first prove that dY/dX - oo as z - oo. Differentiating the
expression used to define we see that

where the inequality holds since 0’ is increasing. Hence (cf. (9.15)

Pro compare §(z) and ~(X), we note that

To find an estimate of we note that since z E ’1 and Z E ’1E, we

have

where xo + iyo is a point on the arc It is clear that

From (9.14), (9.15), the definitions of 0 and ~ and the fact that 0’ is

increasing, we deduce that that as z - oo,
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(cf. (9.3)). According to (9.17) and (9.18),

Since A0 - 0 as z - oo, we know that

Let us now estimate arg Starting from

we have (cf. (9.18), (9.20) and (9.3))

and

Using (9.2), it is easy to see that

Combining (9.22) and (9.23), we obtain

Since g(z) vanishes for z (9.21) and (9.24) imply that there is a positive
constant c such that

The image domain G(Qg) is of the form

To prove Lemma 11, it suffices to prove that is divergent
(cf. (9.9)). Integrating by parts, forgetting constants and using (9.5), we
have
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Since we have assumed that E is not minimally thin at infinity, the
last integral is divergent (cf. (9.8)) which finishes the proof of Lemma 11.0

Proof of Theorem 8. - Let H be a minimal harmonic function in

G(Qg) with pole at infinity. Since II+ ~ is not minimally thin at
infinity in it follows from Lemma 10 that

It is clear that h(z) = H o G(z) is a minimal harmonic function in Of; with
pole at infinity and that

We note that

(cf. the beginning of the proof of Lemma 10 for a similar remark).

LEMMA 12. - Let Oé) be the harmonic measure of 
and let

For any zo E Q,, there exists a positive constant A(zo) such that

for all large values of R.

Before proving Lemma 12, let us complete the proof of Theorem
8. Assume that there exists E &#x3E; 0 such that (9.7) holds for all analytic
polynomials f + i f with f(0) = 0. By Cole’s theorem, we know that

( 1 - has a subharmonic minorant u in C. We note that

y

From (9.6), we see that there is a sequence (Rn ) tending to infinity such
that
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(cf. also (9.25) and (9.27)). It follows that u is non-positive in Qg and thus
that u is non-positive in C. The only subharmonic functions in C which are
bounded above are the constant ones (cf. Theorem 2.14 in [15]). On the
other hand, we see that

and thus u cannot be constant and (1 - does not have a

subharmonic minorant. We have proved Theorem 8. 0

Remark. - A sufficient condition for (9.6) to hold is

In fact, if (9.6) doesn’t hold, we have g(R, O)IO(R) ---~ 0, R --+ oo, and it
follows from (9.2) and (9.3) that

which contradicts (9.29).

Proof of Lemma 12. - Without loss of generality, we assume that
zo = 1. According to the maximum principle, 

To prove an inequality going the other way, we define

11 

and let WR (-, FR, OE) be the harmonic measure of rR in Q, n f I z  R~ . To
every Brownian curve starting at 1 and ending on (OE I = R~ ) ~ rR,
there is a Brownian curve starting at 1 and ending on rR: just reflect
the last part of the first curve in or Hence

2wR(1, rR, OE)’ Applying Harnack’s inequality and using the
fact that h(R) = M(R), we see that there is an absolute constant C such
that

10. Examples for sharpness.

Our Theorem 8 shows that our Theorem 1 through Theorem 4 are
sharp with regard to the constants appearing in the principal terms. In
this section we give examples showing that the sharpness of these theorems
extends to the secondary terms in several cases.
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For examples, it is convenient to consider the family of functions

,- 

The functions Gp are in Hq for q  P , so we may work on the unit circle
to estimate integral means in L(log L)~. We write Gp in terms of its real
and imaginary parts:

A direct calculation gives

and

Both I gp and 19p1 are even functions of 0, so we work on the interval (0,7r).
We define the distribution function Ag on (0,7r) by

From (10.1) we calculate

and from (10.2) it follows that

We wish to calculate IlgpllLloga L and L as defined in the

introduction. However, it is more direct to calculate expressions of the type
tJ. We define

with the modification

We also define
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These integral means have growth comparable to that of the means defined
in the introduction.

LEMMA 13. - There exist positive constants Ao independent of p
such that

Proof. - For (10.8), it follows from (1.4) that the difference between
the expressions II ’ and II . 111,{3 is bounded by a constant times

f (log It is easily shown by the methods used in the proof of
Lemma 14 below that f (log  c{3 for some constant c{3 independent
of p. The boundedness of the integrands when  e completes the proof.
The proofs of (10.9) and (10.10) are similar. 11

We will prove that

LEMMA 14. - The following estimates hold as p - 1:

and
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With these estimates, we can prove that Theorems 1-4 are sharp.
Here and for the remainder of this section, we use "0" and "o" to indicate
behavior as p - 1, with constants possibly depending on a. By comparing
(10.11), (10.12), and (10.15) and letting p - 1, we see that

which establishes the sharpness of both the 2/,7ra and 2/7r constants in
Theorem 1. The same comparison with a = 1 shows the leading 2/7r is
sharp in Theorem 2, and that the coefficient of the L log log L term must
be at least 2/vr. A similar comparison as p -~ 1 of (10.11), (10.14) gives

which establishes the sharpness of 2/~ra in Theorem 3. Finally, by compar-
ing (10.14) and (10.15) with a = 1 we see that

establishing the sharpness of 2/~r in Theorem 4.

Proof of Lemma 14. - We need three basic estimates:

We will also make use of the fact that for any a &#x3E; -1, the substitution
v = 1 P log t givesp

Since arctan( it follows from (10.3) that
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Thus, by (10.5), (10.19), and (10.20), we have for any a &#x3E; 0

We now deduce from ( 10.16) and (10.18) that

I I ... /

and thus we have proved ( 10.11 ) :

Next, we estimate the integral mean of the conjugate function in the
case Q &#x3E; 1. Thus, by (10.5),

Now applying (10.16) and (10.17), we deduce

I I L , / / B B i / /

In the case a = 1, the (log t)a-2 term is absent, and we find
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Using the two equations (10.21) and (10.22) together, we obtain (10.12).
For the case 0  cx  1, we first note that as 0  p  1 both

and also that

with bounds independent of p. A calculation similar to that which gave
(10.21), incorporating these last two estimate, proves (10.14).

To calculate the integral mean we note that, using
(10.19),

Thus for a &#x3E; 0 we have

From this we deduce

which proves ( 10.15) .
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