Divergence operators and odd Poisson brackets
Annales de l'Institut Fourier, Volume 52 (2002) no. 2, pp. 419-456.

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ, of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples include generators of the Schouten bracket of multivectors on a manifold (the supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the supermanifold being the tangent bundle, with odd coordinates on the fibres).

On définit les opérateurs de divergence sur les algèbres graduées et l’on montre qu’étant donné un crochet de Poisson impair sur l’algèbre, l’opérateur qui associe à un élément la divergence de la dérivation hamiltonienne qu’il définit est un générateur du crochet. C’est le “laplacien impair”, Δ de la quantification de Batalin-Vilkovisky. On étudie alors les générateurs des crochets de Poisson impairs sur les supervariétés, où l’opérateur de divergence peut être défini soit à l’aide d’un volume bérézinien, soit à l’aide d’une connexion graduée. Comme exemples, on trouve des générateurs du crochet de Schouten des multivecteurs sur une variété (la supervariété étant le fibré cotangent, où les coordonnées sur les fibres sont impaires), et ceux du crochet de Koszul-Schouten des formes différentielles sur une variété de Poisson (la supervariété étant le fibré tangent, avec des coordonnées impaires sur les fibres).

DOI: 10.5802/aif.1892
Classification: 17B70, 17B63, 58A50, 81S10, 53D17
Keywords: graded Lie algebras, Gerstenhaber algebra, Batalin-Vilkovisky algebra, Schouten bracket, supermanifold, berezinian volume, graded connection, Maurer-Cartan equation, quantum master equation
Mot clés : algèbres de Lie graduées, algèbres de Gerstenhaber, algèbres de Batalin-Vilkovisky, crochet de Schouten, supervariété, volume bérézinien, connexion graduée, équation de Maurer-Cartan, "master equation" quantique

Kosmann-Schwarzbach, Yvette 1; Monterde, Juan 2

1 École Polytechnique, Centre de Mathématiques, Plateau de Palaiseau, 91128 Palaiseau Cedex (France)
2 Universitat de València, Departamento de Geometria y Topologia, 46100 Burjasot (València) (Espagne)
@article{AIF_2002__52_2_419_0,
     author = {Kosmann-Schwarzbach, Yvette and Monterde, Juan},
     title = {Divergence operators and odd {Poisson} brackets},
     journal = {Annales de l'Institut Fourier},
     pages = {419--456},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {2},
     year = {2002},
     doi = {10.5802/aif.1892},
     zbl = {1054.53094},
     mrnumber = {1906481},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1892/}
}
TY  - JOUR
AU  - Kosmann-Schwarzbach, Yvette
AU  - Monterde, Juan
TI  - Divergence operators and odd Poisson brackets
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 419
EP  - 456
VL  - 52
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1892/
DO  - 10.5802/aif.1892
LA  - en
ID  - AIF_2002__52_2_419_0
ER  - 
%0 Journal Article
%A Kosmann-Schwarzbach, Yvette
%A Monterde, Juan
%T Divergence operators and odd Poisson brackets
%J Annales de l'Institut Fourier
%D 2002
%P 419-456
%V 52
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1892/
%R 10.5802/aif.1892
%G en
%F AIF_2002__52_2_419_0
Kosmann-Schwarzbach, Yvette; Monterde, Juan. Divergence operators and odd Poisson brackets. Annales de l'Institut Fourier, Volume 52 (2002) no. 2, pp. 419-456. doi : 10.5802/aif.1892. https://aif.centre-mersenne.org/articles/10.5802/aif.1892/

[1] M. Alexandrov; M. Kontsevich; A. Schwarz; O. Zaboronsky The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys, Volume A12 (1997), pp. 1405-1429 | MR | Zbl

[2] I. A. Batalin; G. A. Vilkovisky Gauge algebra and quantization, Phys. Lett., Volume B 102 (1981), pp. 27-31 | MR

[3] I. A. Batalin; G. A. Vilkovisky Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Physics, Volume B 234 (1984), pp. 106-124 | MR

[4] F. A. Berezin Introduction to Superanalysis, D. Reidel, 1987

[5] J. V. Beltrán; J. Monterde Graded Poisson structures on the algebra of differential forms, Comment. Math. Helv., Volume 70 (1995), pp. 383-402 | DOI | MR | Zbl

[6] J. V. Beltrán; J. Monterde; O. A. Sánchez; - Valenzuela Graded Jacobi operators on the algebra of differential forms, Compositio Math., Volume 106 (1997), pp. 43-59 | DOI | MR | Zbl

[7] P. Deligne et al. Quantum Fields and Strings: A Course for Mathematicians, Volume vol. 1, part 1 (1999)

[8] B. De; Witt Supermanifolds, Cambridge Univ. Press, 1984

[9] A. Frölicher; A. Nijenhuis Theory of vector-valued differential forms, part I, Indag. Math, Volume 18 (1956), pp. 338-359 | MR | Zbl

[10] E. Getzler Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys., Volume 159 (1994), pp. 265-285 | DOI | MR | Zbl

[11] H. Hata; B. Zwiebach Developing the covariant Batalin-Vilkovisky approach to string theory, Ann. Phys., Volume 229 (1994), pp. 177-216 | DOI | MR | Zbl

[12] D. Hernández; Ruipérez; J. Muñoz; Masqué Construction intrinsèque du faisceau de Berezin d'une variété graduée, Comptes Rendus Acad. Sci. Paris, Sér. I Math, Volume 301 (1985), pp. 915-918 | MR | Zbl

[13] D. Hernández; Ruipérez; J. Muñoz; Masqué Variational berezinian problems and their relationship with graded variational problems, Diff. Geometric Methods in Math. Phys. (Salamanca 1985) (Lect. Notes Math.), Volume 1251 (1987), pp. 137-149 | Zbl

[14] J. Huebschmann Poisson cohomology and quantization, J. für die reine und angew. Math., Volume 408 (1990), pp. 57-113 | DOI | MR | Zbl

[15] J. Huebschmann Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, Volume 48 (1998) no. 2, pp. 425-440 | DOI | Numdam | MR | Zbl

[16] J. Huebschmann Duality for Lie-Rinehart algebras and the modular class, J. für die reine und angew. Math., Volume 510 (1999), pp. 103-159 | DOI | MR | Zbl

[17] O. M. Khudaverdian Geometry of superspace with even and odd brackets, J. Math. Phys., Volume 32 (1991), pp. 1934-1937 | DOI | MR | Zbl

[18] O. M. Khudaverdian; Pyatov, P. N. Batalin-Vilkovisky formalism and odd symplectic geometry, Geometry and integrable models (Dubna 1994) (1996), pp. 144-181

[19] O. M. Khudaverdian; A. P. Nersessian On the geometry of the Batalin-Vilkovisky formalism, Mod. Phys. Lett., Volume A 8 (1993), pp. 2377-2385 | MR | Zbl

[20] Y. Kosmann; - Schwarzbach From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, Volume 46 (1996) no. 5, pp. 1243-1274 | DOI | Numdam | MR | Zbl

[21] Y. Kosmann; Schwarzbach Modular vector fields and Batalin-Vilkovisky algebras, Banach Center Publications, Volume 51 (2000), pp. 109-129 | MR | Zbl

[22] Y. Kosmann; - Schwarzbach; F. Magri Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, Volume A53 (1990), pp. 35-81 | Numdam | MR | Zbl

[23] B. Kostant Graded manifolds, graded Lie theory and prequantization, Proc. Conf. Diff. Geom. Methods in Math. Phys. (Bonn 1975) (Lecture Notes Math.), Volume 570 (1977), pp. 177-306 | Zbl

[24] J.-L. Koszul Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui (Astérisque, hors série) (1985), pp. 257-271 | Zbl

[25] I. S. Krasil'shchik Schouten brackets and canonical algebras (Lecture Notes Math.), Volume 1334 (1988), pp. 79-110 | Zbl

[26] I. S. Krasil'shchik Supercanonical algebras and Schouten brackets, Mat. Zametki, Volume 49(1) (1991), pp. 70-76 | MR | Zbl

[26] I. S. Krasil'shchik Supercanonical algebras and Schouten brackets, Mathematical Notes, Volume 49(1) (1991), pp. 50-54 | MR | Zbl

[27] D. Leites Supermanifold Theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk (in Russian). (1983)

[28] D. Leites Quantization and supermanifolds, The Schrödinger Equation, Supplément 3 in Berezin, Kluwer, 1991

[29] B. H. Lian; G. J. Zuckerman New perspectives on the BRST-algebraic structure of string theory, Commun. Math. Phys, Volume 154 (1993), pp. 613-646 | DOI | MR | Zbl

[30] Y. I. Manin Gauge Field Theory and Complex Geometry, Springer-Verlag, 1988 | MR | Zbl

[31] Y. I. Manin; I. B. Penkov The formalism of left and right connections on supermanifolds, Lectures on Supermanifolds, Geometrical Methods and Conformal Groups, Volume Doebner H.-D., Hennig, J. D.PalevT. D.eds. (1989), pp. 3-13 | Zbl

[32] J. Monterde; A. Montesinos Integral curves of derivations, Ann. Global Anal. Geom., Volume 6 (1988), pp. 177-189 | DOI | MR | Zbl

[33] J. Monterde; O. A. Sánchez; Valenzuela The exterior derivative as a Killing vector field, Israel J. Math., Volume 93 (1996), pp. 157-170 | DOI | MR | Zbl

[34] I. B. Penkov 𝒟-modules on supermanifolds, Invent. Math., Volume 71 (1983), pp. 501-512 | MR | Zbl

[35] M. Rothstein Integration on noncompact supermanifolds, Trans. Amer. Math. Soc., Volume 299 (1987), pp. 387-396 | DOI | MR | Zbl

[36] V. Schechtman Remarks on formal deformations and Batalin-Vilkovisky algebras (e-print, math.AG/9802006)

[37] A. Schwarz Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys., Volume 155 (1993), pp. 249-260 | DOI | MR | Zbl

[38] A. Schwarz Semi-classical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys., Volume 158 (1993), pp. 373-396 | DOI | MR | Zbl

[39] J. Stasheff; Sternheimer, D. Deformation theory and the Batalin-Vilkovisky master equation, Deformation Theory and Symplectic Geometry (Ascona 1996) (1997), pp. 271-284

[40] I. Vaisman Lectures on the Geometry of Poisson Manifolds, Birkhäuser, 1994 | MR | Zbl

[41] T. Voronov Geometric integration theory on supermanifolds, Sov. Sci. Rev. C Math, Volume 9 (1992), pp. 1-138 | MR | Zbl

[42] A. Weinstein The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997), pp. 379-394 | DOI | MR | Zbl

[43] E. Witten A note on the antibracket formalism, Mod. Phys. Lett., Volume A5 (1990), pp. 487-494 | MR | Zbl

[44] P. Xu Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys., Volume 200 (1999), pp. 545-560 | DOI | MR | Zbl

Cited by Sources: