[Estimations de fonctions de l’opérateur de Laplace-Beltrami pour les espaces symétriques non compacts. III]
Soit un espace symétrique du type noncompact, soit son opérateur Laplace- -Beltrami, et soit le spectre de (vu comme opérateur sur ). Si et , notons l’opérateur sur . On démontre des estimations de la norme de de dans pour chaque , qui sont optimales si ou .
Let be a symmetric space of the noncompact type, with Laplace–Beltrami operator , and let be the -spectrum of . For in such that , let be the operator on defined formally as . In this paper, we obtain operator norm estimates for for all , and show that these are optimal when is small and when is bounded below .
Keywords: symmetric space, wave equation, $L^p-L^q$ estimates
Mot clés : Espace symétrique, équation des ondes, estimations $L^p-L^q$
Cowling, Michael 1 ; Giulini, Saverio 2 ; Meda, Stefano 3
@article{AIF_2001__51_4_1047_0, author = {Cowling, Michael and Giulini, Saverio and Meda, Stefano}, title = {$L^p-L^q$ estimates for functions of the {Laplace-Beltrami} operator on noncompact symmetric spaces. {III}}, journal = {Annales de l'Institut Fourier}, pages = {1047--1069}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1844}, zbl = {0980.43007}, mrnumber = {1849214}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1844/} }
TY - JOUR AU - Cowling, Michael AU - Giulini, Saverio AU - Meda, Stefano TI - $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III JO - Annales de l'Institut Fourier PY - 2001 SP - 1047 EP - 1069 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1844/ DO - 10.5802/aif.1844 LA - en ID - AIF_2001__51_4_1047_0 ER -
%0 Journal Article %A Cowling, Michael %A Giulini, Saverio %A Meda, Stefano %T $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III %J Annales de l'Institut Fourier %D 2001 %P 1047-1069 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1844/ %R 10.5802/aif.1844 %G en %F AIF_2001__51_4_1047_0
Cowling, Michael; Giulini, Saverio; Meda, Stefano. $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III. Annales de l'Institut Fourier, Tome 51 (2001) no. 4, pp. 1047-1069. doi : 10.5802/aif.1844. https://aif.centre-mersenne.org/articles/10.5802/aif.1844/
[A1] Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Volume 65 (1992), pp. 257-297 | MR | Zbl
[A2] Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. Math., Volume 132 (1990), pp. 597-628 | DOI | MR | Zbl
[AJ] Heat kernel and Green function estimates on noncompact symmetric spaces I, II (Preprint) | Zbl
[B] On the wave equation on a compact Riemannian manifold without conjugate point, Math. Z., Volume 155 (1977), pp. 249-276 | DOI | MR | Zbl
[CGM1] Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. I, Duke Math. J., Volume 72 (1993), pp. 109-150 | DOI | MR | Zbl
[CGM2] Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. II, J. Lie Th., Volume 5 (1995), pp. 1-14 | MR | Zbl
[CGT] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Volume 17 (1982), pp. 15-53 | MR | Zbl
[H1] Groups and Geometric Analysis, Academic Press, New York, 1984 | MR | Zbl
[H2] Wave equations on homogeneous spaces, Lie Group Representations III (Lecture Notes in Math.), Volume 1077 (1984), pp. 254-287 | Zbl
[Hö1] Estimates for translation invariant operators in spaces, Acta Math., Volume 104 (1960), pp. 93-140 | DOI | MR | Zbl
[Hö2] The Analysis of Linear Partial Differential Operators. III., Grundlehren der mathematischen Wissenschaften, 274, Springer-Verlag, Berlin Heidelberg New York, 1985 | MR | Zbl
[T] estimates on functions of the Laplace operator, Duke Math. J., Volume 58 (1989), pp. 773-793 | DOI | MR | Zbl
Cité par Sources :