We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.
Nous étudions la compatibilité entre l'ensemble des éléments pleinement commutatifs d'un groupe de Coxeter et les divers types de cellules de Kazhdan-Lusztig, en utilisant une base canonique pour une version généralisée de l'algèbre de Temperley-Lieb.
Keywords: canonical basis, cell theory, Coxeter group, Hecke algebra, Kazhdan-Lusztig basis, Temperley-Lieb algebra
Mot clés : base canonique, théorie des cellules, groupe de Coxeter, algèbre de Hecke, base de Kazhdan-Lusztig, algèbre de Temperley-Lieb
Green, Richard M. 1; Losonczy, Jozsef 2
@article{AIF_2001__51_4_1025_0, author = {Green, Richard M. and Losonczy, Jozsef}, title = {Fully commutative {Kazhdan-Lusztig} cells}, journal = {Annales de l'Institut Fourier}, pages = {1025--1045}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1843}, zbl = {1008.20036}, mrnumber = {1849213}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1843/} }
TY - JOUR AU - Green, Richard M. AU - Losonczy, Jozsef TI - Fully commutative Kazhdan-Lusztig cells JO - Annales de l'Institut Fourier PY - 2001 SP - 1025 EP - 1045 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1843/ DO - 10.5802/aif.1843 LA - en ID - AIF_2001__51_4_1025_0 ER -
%0 Journal Article %A Green, Richard M. %A Losonczy, Jozsef %T Fully commutative Kazhdan-Lusztig cells %J Annales de l'Institut Fourier %D 2001 %P 1025-1045 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1843/ %R 10.5802/aif.1843 %G en %F AIF_2001__51_4_1025_0
Green, Richard M.; Losonczy, Jozsef. Fully commutative Kazhdan-Lusztig cells. Annales de l'Institut Fourier, Volume 51 (2001) no. 4, pp. 1025-1045. doi : 10.5802/aif.1843. https://aif.centre-mersenne.org/articles/10.5802/aif.1843/
[1] Coxeter Version 1.01, Université de Lyon, France, 1991
[2] A Hecke algebra quotient and properties of commutative elements of a Weyl group (1995) (Ph.D. thesis, M.I.T.)
[3] Monomials and Temperley--Lieb algebras, J. Algebra, Volume 190 (1997), pp. 498-517 | DOI | MR | Zbl
[4] Nilpotent orbits and commutative elements, J. Algebra, Volume 196 (1997), pp. 490-498 | DOI | MR | Zbl
[5] On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Math., Volume 75 (1990), pp. 135-169 | Numdam | MR | Zbl
[6] On the classification of primitive ideals for complex classical Lie algebras, II, Compositio Math., Volume 81 (1992), pp. 307-336 | Numdam | MR | Zbl
[7] On the classification of primitive ideals for complex classical Lie algebras, III, Compositio Math., Volume 88 (1993), pp. 187-234 | Numdam | MR | Zbl
[8] Modular representations of Hecke algebras and related algebras (1995) (Ph.D. thesis, University of Sydney)
[9] Generalized Temperley--Lieb algebras and decorated tangles, J. Knot Theory Ramifications, Volume 7 (1998), pp. 155-171 | DOI | MR | Zbl
[10] Decorated tangles and canonical bases (Preprint) | MR | Zbl
[11] Canonical bases for Hecke algebra quotients, Math. Res. Lett., Volume 6 (1999), pp. 213-222 | MR | Zbl
[12] A projection property for Kazhdan--Lusztig bases, Internat. Math. Res. Notices, Volume 1 (2000), pp. 23-34 | DOI | MR | Zbl
[13] Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[14] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl
[15] The Kazhdan--Lusztig basis and the Temperley--Lieb quotient in type D, J. Algebra, Volume 233 (2000), pp. 1-15 | DOI | MR | Zbl
[16] Cells in affine Weyl groups, II, J. Algebra, Volume 109 (1987), pp. 536-548 | DOI | MR | Zbl
[17] On the fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 5 (1996), pp. 353-385 | DOI | MR | Zbl
Cited by Sources: