The purpose of this paper is to establish a connection between various objects such as dynamical -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical -matrices of simple Lie algebras , and prove that dynamical -matrices are in one-one correspondence with certain Lagrangian subalgebras of .
Le but de cet article est d’établir un lien entre différents sujets tels que les - matrices dynamiques, les bialgèbroïdes de Lie et les sous-algèbres lagrangiennes. Notre méthode se base sur la théorie des structures de Dirac et algébroïdes de Courant. En particulier, nous donnons une nouvelle méthode pour classifier les -matrices dynamiques des algèbres de Lie simples , et prouvons que ces -matrices dynamiques sont en bijection avec certaines sous-algèbres lagrangiennes de .
Keywords: dynamical $r$-matrices, Dirac structures, Lie bialgebroid, Courant algebroid, lagrangian subalgebra
Mot clés : $r$-matrice dynamique, structure de Dirac, bialgébroïde de Lie, algébroïde de Courant, sous-algèbre lagrangienne
@article{AIF_2001__51_3_835_0, author = {Liu, Zhang-Ju and Xu, Ping}, title = {Dirac structures and dynamical $r$-matrices}, journal = {Annales de l'Institut Fourier}, pages = {835--859}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {3}, year = {2001}, doi = {10.5802/aif.1838}, zbl = {1029.53088}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1838/} }
TY - JOUR AU - Liu, Zhang-Ju AU - Xu, Ping TI - Dirac structures and dynamical $r$-matrices JO - Annales de l'Institut Fourier PY - 2001 SP - 835 EP - 859 VL - 51 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1838/ DO - 10.5802/aif.1838 LA - en ID - AIF_2001__51_3_835_0 ER -
%0 Journal Article %A Liu, Zhang-Ju %A Xu, Ping %T Dirac structures and dynamical $r$-matrices %J Annales de l'Institut Fourier %D 2001 %P 835-859 %V 51 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1838/ %R 10.5802/aif.1838 %G en %F AIF_2001__51_3_835_0
Liu, Zhang-Ju; Xu, Ping. Dirac structures and dynamical $r$-matrices. Annales de l'Institut Fourier, Volume 51 (2001) no. 3, pp. 835-859. doi : 10.5802/aif.1838. https://aif.centre-mersenne.org/articles/10.5802/aif.1838/
[1] Invariant varieties through singularities of holomorphic vector fields, Annals of Math. (2), Volume 115 (1982) | Zbl
[1] Universal solutions of quantum dynamical Yang-Baxter equation, Lett. Math. Phys., Volume 44 (1998), pp. 201-214 | DOI | Zbl
[2] Classical dynamical r-matrices for Calogero-Moser systems and their generalizations, Volume q-alg/9706024
[3] Equation de Yang-Baxter dynamique classique et algebroïdes de Lie, C. R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 541-546 | Zbl
[4] Triangle equations and simple Lie algebras, Math. Phys. Review, Volume 4 (1984), pp. 93-165 | Zbl
[5] The r-matrix structure of the Euler-Calogero-Moser model, Phys. Lett. A, Volume 186 (1994), pp. 114-118 | DOI | Zbl
[6] Exact Yangian symmetry in the classical Euler-Calogero-Moser model, Phys. Lett. A, Volume 188 (1994), pp. 263-271 | DOI | Zbl
[7] Dirac manifolds, Trans. A.M.S., Volume 319 (1990), pp. 631-661 | DOI | Zbl
[8] Quasi-Hopf algebras, Leningrad Math. J., Volume 2 (1991), pp. 829-860 | Zbl
[9] On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys., Volume 95 (1993), pp. 524-525 | DOI | Zbl
[10] Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys., Volume 192 (1998), pp. 77-120 | DOI | Zbl
[11] Conformal field theory and integrable systems associated to elliptic curves, Proc. Int. Congr. Math. Zürich (1994), pp. 1247-1255 | Zbl
[12] Quasi-Hopf deformation of quantum groups, Lett. Math. Phys., Volume 40 (1997), pp. 117-134 | DOI | Zbl
[13] Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups, Volume 4 (1999), pp. 303-327 | DOI | Zbl
[14] Poisson homogeneous spaces of Poisson-Lie groups (1997) (Ph. D. thesis, The institute of low temperature, Kharkov)
[15] Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., Volume 41 (1995), pp. 153-165 | DOI | Zbl
[16] Some remarks on Dirac structures and Poisson reductions, Banach Center Publ., Volume 51 (2000), pp. 165-173 | Zbl
[17] Manin triples for Lie bialgebroids, J. Diff. Geom., Volume 45 (1997), pp. 547-574 | Zbl
[18] Dirac structures and Poisson homogeneous spaces, Comm. Math. Phys., Volume 192 (1998), pp. 121-144 | DOI | Zbl
[19] Exact Lie bialgebroids and Poisson groupoids, Geom. Funct. Anal., Volume 6 (1996), pp. 138-145 | DOI | Zbl
[20] Classical dynamical -matrices and homogeneous Poisson structures on and , Comm. Math. Phys., Volume 212 (2000), pp. 337-370 | DOI | Zbl
[21] Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom., Volume 31 (1990), pp. 501-526 | Zbl
[22] Lie bialgebroids and Poisson groupoids, Duke Math. J., Volume 18 (1994), pp. 415-452 | DOI | Zbl
[23] Integration of Lie bialgebroids, Topology, Volume 39 (2000), pp. 445-467 | DOI | Zbl
[24] Dressing transformations and Poisson Lie group actions, Volume 21 (1985), pp. 1237-1260 | Zbl
[25] On classification of dynamical -matrices, Math. Res. Lett., Volume 5 (1998), pp. 13-30 | Zbl
[26] Poisson geometry, Diff. Geom. Appl., Volume 9 (1998), pp. 213-238 | DOI | Zbl
[27] Quantum groupoids associated to universal dynamical R-matrices, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999), pp. 327-332 | Zbl
[28] Quantum groupoids, Comm. Math. Phys., Volume 216 (2001), pp. 539-581 | DOI | Zbl
Cited by Sources: