On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si , le deuxième exposant est strictement négatif.
We prove that, for every dimension , the Lyapunov exponents of the Jacobi-Perron algorithm are all different, and that the sum of the extreme exponents is strictly positive. Especially, if , the second exponent is strictly negative.
Mot clés : spectre de Lyapunov, algorithme de Jacobi-Perron, produit de matrices aléatoires stationnaires, points périodiques, opérateurs de transfert
Keywords: Lyapunov spectrum, Jacobi-Perron algorithm, product of stationary random matrices, periodic points, transfer operators
Broise-Alamichel, Anne 1 ; Guivarc'h, Yves 2
@article{AIF_2001__51_3_565_0, author = {Broise-Alamichel, Anne and Guivarc'h, Yves}, title = {Exposants caract\'eristiques de l'algorithme de {Jacobi-Perron} et de la transformation associ\'ee}, journal = {Annales de l'Institut Fourier}, pages = {565--686}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {3}, year = {2001}, doi = {10.5802/aif.1832}, zbl = {1012.11060}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1832/} }
TY - JOUR AU - Broise-Alamichel, Anne AU - Guivarc'h, Yves TI - Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée JO - Annales de l'Institut Fourier PY - 2001 SP - 565 EP - 686 VL - 51 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1832/ DO - 10.5802/aif.1832 LA - fr ID - AIF_2001__51_3_565_0 ER -
%0 Journal Article %A Broise-Alamichel, Anne %A Guivarc'h, Yves %T Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée %J Annales de l'Institut Fourier %D 2001 %P 565-686 %V 51 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1832/ %R 10.5802/aif.1832 %G fr %F AIF_2001__51_3_565_0
Broise-Alamichel, Anne; Guivarc'h, Yves. Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée. Annales de l'Institut Fourier, Tome 51 (2001) no. 3, pp. 565-686. doi : 10.5802/aif.1832. https://aif.centre-mersenne.org/articles/10.5802/aif.1832/
[AN] Mesures de Gauss pour des algorithmes de fractions continues, Ann. École Norm. Sup., Volume 26 (1993), pp. 645-664 | Numdam | MR | Zbl
[At] Recurrence of cocycles and random walks, J. London Math. Soc., Volume 13 (1976), pp. 486-488 | DOI | MR | Zbl
[Ba1] A multidimensional continued fractions and some of its statistical properties, J. Stat. Physics, Volume 66 (1992) no. 5/6, pp. 1463-1505 | DOI | MR | Zbl
[Ba2] A convergence exponent for multidimensional continued fractions algorithms, J. Stat. Physics, Volume 66 (1992) no. 5/6, pp. 1507-1526 | DOI | MR | Zbl
[BL] Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985 | MR | Zbl
[Bo] Introduction aux groupes arithmétiques, Hermann, Paris, 1969 | MR | Zbl
[Br1]
(1994) (Thèse et annexe, Université de Rennes I)[Br2] Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France, Volume 124 (1996), pp. 97-139 | Numdam | MR | Zbl
[Ca] An introduction to diophantine approximation, Cambridge University Press, Cambridge, 1957 | MR | Zbl
[CGu] Limits sets of groups of linear transformations, Ergodic Theory and Harmonic Analysis (Sanky), Volume 62, Pt 3 (2000), pp. 367-385 | Zbl
[CR] Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France, Volume 118 (1990), pp. 273-310 | Numdam | MR | Zbl
[D] Dynamical systems on homogeneous spaces, Math. Physics I: Dynamical systems, Ergodic theory and Applications (Encyclopediae of Mathematical Sciences), Volume vol. 100, chap. 6 (2000)
[F] Non commuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl
[GGu] Zariski closure and the dimension of the Gaussian law of the product of random matrices. I, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 109-142 | DOI | MR | Zbl
[GM] Simplicity of the Liapunoff spectrum for product of random matrices, Soviet Math., Volume 35 (1987), pp. 309-313 | Zbl
[Go] Exponentially fast mixing, Sov. Math. Dokl., Volume 12 (1971), pp. 331-335 | Zbl
[Gr] Discrete groups with dense orbits, Flows on homogeneous spaces (1963), pp. 85-103
[Gu1] Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergodic Th. Dynam. Systems, Volume 9 (1989), pp. 433-453 | MR | Zbl
[Gu2] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Th. Dynam. Systems, Volume 10 (1990), pp. 483-512 | MR | Zbl
[GuLeP] Transformée de Laplace d'une mesure de probabilité sur le groupe linéaire et applications (2000) (Prépublication, Rennes, IRMAR, n°00-26)
[GuR1] Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahr. Verw. Geb., Volume 69 (1985), pp. 187-242 | DOI | MR | Zbl
[GuR2] Product of random matrices: convergence theorems, Contemp. Math., Volume 50 (1986), pp. 31-54 | MR | Zbl
[GuR3] Propriétés de contraction d'un semi-groupe de matrices inversibles. C\oefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math., Volume 65 (1989), pp. 165-196 | DOI | MR | Zbl
[HK1] On almost everywhere strong convergence of multidimensionnal continued fractions algorithms, Ergodic Th. Dynam. Systems, Volume 20 (2000), pp. 1711-1733 | DOI | MR | Zbl
[HK2] Continued fractions and the d-dimensionnal Gauss transformation (2000) (Prépublication, 30 p. Edinburgh) | MR | Zbl
[IKO] Almost everywhere exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems, Volume 13 (1993), pp. 319-334 | MR | Zbl
[IKO] On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: A corrected proof., Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 6, pp. 1345-1352 | DOI | MR | Zbl
[ITM] Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math., Volume 52 (1950), pp. 140-147 | DOI | MR | Zbl
[Ke] Sums of stationary sequences cannot grow slower than linearly, Proc. Amer. Math. Soc., Volume 49 (1975), pp. 205-211 | DOI | MR | Zbl
[Ko] Multidimensional KAM theory from the renormalisation group viewpoint, Dynamical System and Statistical Mechanics (Advances in Soviet Math.), Volume 3 (1991), pp. 99-130 | Zbl
[La1] The quality of the diophantine approximations found by the Jacobi-Perron and related algorithms, Mh. Math., Volume 115 (1993), pp. 299-328 | DOI | MR | Zbl
[La2] Geodesic multidimensionnal continued fractions, Proc. Lond. Math. Soc., III, Volume 69 (1994) no. 3, pp. 464-488 | DOI | MR | Zbl
[LeP] Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Volume 25 (1989), pp. 109-142 | Numdam | MR | Zbl
[Ma] Approach to equilibrium for locally expanding maps in , Comm. Math. Phys., Volume 9 (1984), pp. 1-15 | DOI | MR | Zbl
[Me] A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems, Volume 19 (1999), pp. 1077-1083 | DOI | MR | Zbl
[Mo] Leçons sur les familles normales de fonctions analytiques et leurs applications, chap. I et IX, Gauthier-Villars, Paris, 1927 | JFM
[N] The three-dimensional Poincaré continued fractions algorithm, Israel J. Math., Volume 90 (1995), pp. 373-401 | DOI | MR | Zbl
[Os] A multiplicative ergodic theorem, Trans. Moscow Math. Soc., Volume 19 (1968), pp. 197-231 | MR | Zbl
[Pe] Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., Volume 64 (1907), pp. 1-76 | DOI | JFM | MR
[Po] Sur une généralisation des fractions continues, C. R. Acad. Sci. Paris, Volume 99 (8 déc. 1884) | JFM
[PU] Continued fractions in several dimensions, Proc. Camb. Phil. Soc., Volume 26 (1930), pp. 127-144 | DOI | JFM
[Ra] A proof of Oseledets multiplicative ergodic theorem, Israel J. Math., Volume 32 (1979), pp. 356-362 | DOI | MR | Zbl
[S1] The metrical theory of the Jacobi-Perron algorithm, Lecture Notes in Mathematics, 334, Springer, 1973 | MR | Zbl
[S2] A modified Jacobi-Perron algorithm with explicitely given invariant measure (Lecture Notes in Mathematics), Volume 729 (1979), pp. 199-202 | Zbl
[S3] The exponent of convergence for the two-dimensional Jacobi-Perron algorithm, Proceedings Conference on Analytic and Elementary Number Theory (1996), pp. 207-213 | Zbl
[Z] Finite Gauss measure on the space of interval exchange transformations. Lyapunoff exponents, Annales de l'Institut Fourier, Volume 46 (1996) no. 2, pp. 325-370 | DOI | Numdam | MR | Zbl
Cité par Sources :