Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée
Annales de l'Institut Fourier, Tome 51 (2001) no. 3, pp. 565-686.

On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension d quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si d=2, le deuxième exposant est strictement négatif.

We prove that, for every dimension d, the Lyapunov exponents of the Jacobi-Perron algorithm are all different, and that the sum of the extreme exponents is strictly positive. Especially, if d=2, the second exponent is strictly negative.

DOI : 10.5802/aif.1832
Classification : 11J70, 37H15
Mot clés : spectre de Lyapunov, algorithme de Jacobi-Perron, produit de matrices aléatoires stationnaires, points périodiques, opérateurs de transfert
Keywords: Lyapunov spectrum, Jacobi-Perron algorithm, product of stationary random matrices, periodic points, transfer operators

Broise-Alamichel, Anne 1 ; Guivarc'h, Yves 2

1 Université Paris-Sud, UMR 8628 du CNRS, Laboratoire de Mathématiques, Équipe de Topologie et Dynamique, Bâtiment 425, 91405 Orsay Cedex (France)
2 Université de Rennes I, UMR 6625 du CNRS, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)
@article{AIF_2001__51_3_565_0,
     author = {Broise-Alamichel, Anne and Guivarc'h, Yves},
     title = {Exposants caract\'eristiques de l'algorithme de {Jacobi-Perron} et de la transformation associ\'ee},
     journal = {Annales de l'Institut Fourier},
     pages = {565--686},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {3},
     year = {2001},
     doi = {10.5802/aif.1832},
     zbl = {1012.11060},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1832/}
}
TY  - JOUR
AU  - Broise-Alamichel, Anne
AU  - Guivarc'h, Yves
TI  - Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 565
EP  - 686
VL  - 51
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1832/
DO  - 10.5802/aif.1832
LA  - fr
ID  - AIF_2001__51_3_565_0
ER  - 
%0 Journal Article
%A Broise-Alamichel, Anne
%A Guivarc'h, Yves
%T Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée
%J Annales de l'Institut Fourier
%D 2001
%P 565-686
%V 51
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1832/
%R 10.5802/aif.1832
%G fr
%F AIF_2001__51_3_565_0
Broise-Alamichel, Anne; Guivarc'h, Yves. Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée. Annales de l'Institut Fourier, Tome 51 (2001) no. 3, pp. 565-686. doi : 10.5802/aif.1832. https://aif.centre-mersenne.org/articles/10.5802/aif.1832/

[AN] P. Arnoux; A. Nogueira Mesures de Gauss pour des algorithmes de fractions continues, Ann. École Norm. Sup., Volume 26 (1993), pp. 645-664 | Numdam | MR | Zbl

[At] G. Atkinson Recurrence of cocycles and random walks, J. London Math. Soc., Volume 13 (1976), pp. 486-488 | DOI | MR | Zbl

[Ba1] P.R. Baldwin A multidimensional continued fractions and some of its statistical properties, J. Stat. Physics, Volume 66 (1992) no. 5/6, pp. 1463-1505 | DOI | MR | Zbl

[Ba2] P.R. Baldwin A convergence exponent for multidimensional continued fractions algorithms, J. Stat. Physics, Volume 66 (1992) no. 5/6, pp. 1507-1526 | DOI | MR | Zbl

[BL] P. Bougerol; J. Lacroix Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985 | MR | Zbl

[Bo] A. Borel Introduction aux groupes arithmétiques, Hermann, Paris, 1969 | MR | Zbl

[Br1] A. Broise (1994) (Thèse et annexe, Université de Rennes I)

[Br2] A. Broise Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France, Volume 124 (1996), pp. 97-139 | Numdam | MR | Zbl

[Ca] J.W.S. Cassels An introduction to diophantine approximation, Cambridge University Press, Cambridge, 1957 | MR | Zbl

[CGu] J.-P. Conze; Y. Guivarc'h Limits sets of groups of linear transformations, Ergodic Theory and Harmonic Analysis (Sanky), Volume 62, Pt 3 (2000), pp. 367-385 | Zbl

[CR] J.-P. Conze; A. Raugi Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France, Volume 118 (1990), pp. 273-310 | Numdam | MR | Zbl

[D] S.G. Dani; Ya G. Sinaï, ed. Dynamical systems on homogeneous spaces, Math. Physics I: Dynamical systems, Ergodic theory and Applications (Encyclopediae of Mathematical Sciences), Volume vol. 100, chap. 6 (2000)

[F] H. Furstenberg Non commuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl

[GGu] I. Goldsheid; Y. Guivarc'h Zariski closure and the dimension of the Gaussian law of the product of random matrices. I, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 109-142 | DOI | MR | Zbl

[GM] I. Goldsheid; G.A. Margulis Simplicity of the Liapunoff spectrum for product of random matrices, Soviet Math., Volume 35 (1987), pp. 309-313 | Zbl

[Go] M. Gordin Exponentially fast mixing, Sov. Math. Dokl., Volume 12 (1971), pp. 331-335 | Zbl

[Gr] W.L. Greenberg; L. Auslander, L. Green Discrete groups with dense orbits, Flows on homogeneous spaces (1963), pp. 85-103

[Gu1] Y. Guivarc'h Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergodic Th. Dynam. Systems, Volume 9 (1989), pp. 433-453 | MR | Zbl

[Gu2] Y. Guivarc'h Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Th. Dynam. Systems, Volume 10 (1990), pp. 483-512 | MR | Zbl

[GuLeP] Y. Guivarc'h; E. Le Page Transformée de Laplace d'une mesure de probabilité sur le groupe linéaire et applications (2000) (Prépublication, Rennes, IRMAR, n°00-26)

[GuR1] Y. Guivarc'h; A. Raugi Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahr. Verw. Geb., Volume 69 (1985), pp. 187-242 | DOI | MR | Zbl

[GuR2] Y. Guivarc'h; A. Raugi Product of random matrices: convergence theorems, Contemp. Math., Volume 50 (1986), pp. 31-54 | MR | Zbl

[GuR3] Y. Guivarc'h; A. Raugi Propriétés de contraction d'un semi-groupe de matrices inversibles. C\oefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math., Volume 65 (1989), pp. 165-196 | DOI | MR | Zbl

[HK1] D.M. Hardcastle; K. Khanin On almost everywhere strong convergence of multidimensionnal continued fractions algorithms, Ergodic Th. Dynam. Systems, Volume 20 (2000), pp. 1711-1733 | DOI | MR | Zbl

[HK2] D.M. Hardcastle; K. Khanin Continued fractions and the d-dimensionnal Gauss transformation (2000) (Prépublication, 30 p. Edinburgh) | MR | Zbl

[IKO] S. Ito; M. Keane; M. Ohtsuki Almost everywhere exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems, Volume 13 (1993), pp. 319-334 | MR | Zbl

[IKO] T. Fujita; S. Ito; M. Keane; M. Ohtsuki On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: A corrected proof., Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 6, pp. 1345-1352 | DOI | MR | Zbl

[ITM] C.T. Ionescu-Tulcea; G. Marinescu Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math., Volume 52 (1950), pp. 140-147 | DOI | MR | Zbl

[Ke] H. Kesten Sums of stationary sequences cannot grow slower than linearly, Proc. Amer. Math. Soc., Volume 49 (1975), pp. 205-211 | DOI | MR | Zbl

[Ko] D.V. Kosygin Multidimensional KAM theory from the renormalisation group viewpoint, Dynamical System and Statistical Mechanics (Advances in Soviet Math.), Volume 3 (1991), pp. 99-130 | Zbl

[La1] J.C. Lagarias The quality of the diophantine approximations found by the Jacobi-Perron and related algorithms, Mh. Math., Volume 115 (1993), pp. 299-328 | DOI | MR | Zbl

[La2] J.C. Lagarias Geodesic multidimensionnal continued fractions, Proc. Lond. Math. Soc., III, Volume 69 (1994) no. 3, pp. 464-488 | DOI | MR | Zbl

[LeP] E. Le Page Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Volume 25 (1989), pp. 109-142 | Numdam | MR | Zbl

[Ma] D. Mayer Approach to equilibrium for locally expanding maps in k , Comm. Math. Phys., Volume 9 (1984), pp. 1-15 | DOI | MR | Zbl

[Me] R. Meester A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems, Volume 19 (1999), pp. 1077-1083 | DOI | MR | Zbl

[Mo] P. Montel Leçons sur les familles normales de fonctions analytiques et leurs applications, chap. I et IX, Gauthier-Villars, Paris, 1927 | JFM

[N] A. Nogueira The three-dimensional Poincaré continued fractions algorithm, Israel J. Math., Volume 90 (1995), pp. 373-401 | DOI | MR | Zbl

[Os] V.I. Oseledets A multiplicative ergodic theorem, Trans. Moscow Math. Soc., Volume 19 (1968), pp. 197-231 | MR | Zbl

[Pe] O. Perron Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., Volume 64 (1907), pp. 1-76 | DOI | JFM | MR

[Po] H. Poincaré Sur une généralisation des fractions continues, C. R. Acad. Sci. Paris, Volume 99 (8 déc. 1884) | JFM

[PU] R.E.A.C. Paley; H.D. Ursell Continued fractions in several dimensions, Proc. Camb. Phil. Soc., Volume 26 (1930), pp. 127-144 | DOI | JFM

[Ra] M.S. Raghunathan A proof of Oseledets multiplicative ergodic theorem, Israel J. Math., Volume 32 (1979), pp. 356-362 | DOI | MR | Zbl

[S1] F. Schweiger The metrical theory of the Jacobi-Perron algorithm, Lecture Notes in Mathematics, 334, Springer, 1973 | MR | Zbl

[S2] F. Schweiger A modified Jacobi-Perron algorithm with explicitely given invariant measure (Lecture Notes in Mathematics), Volume 729 (1979), pp. 199-202 | Zbl

[S3] F. Schweiger; W.G. Nowak, J. Schoissengeier The exponent of convergence for the two-dimensional Jacobi-Perron algorithm, Proceedings Conference on Analytic and Elementary Number Theory (1996), pp. 207-213 | Zbl

[Z] A. Zorich Finite Gauss measure on the space of interval exchange transformations. Lyapunoff exponents, Annales de l'Institut Fourier, Volume 46 (1996) no. 2, pp. 325-370 | DOI | Numdam | MR | Zbl

Cité par Sources :