Une version relative de constructions récentes et le théorème de Lefschetz rationnel de Nori fournissent des exemples intéressants de la filtration topologique sur les cycles algébriques.
A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.
@article{AIF_2000__50_4_1073_0, author = {Friedlander, Eric M.}, title = {Relative {Chow} correspondences and the {Griffiths} group}, journal = {Annales de l'Institut Fourier}, pages = {1073--1098}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {4}, year = {2000}, doi = {10.5802/aif.1785}, mrnumber = {1799738}, zbl = {0960.14005}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1785/} }
TY - JOUR AU - Friedlander, Eric M. TI - Relative Chow correspondences and the Griffiths group JO - Annales de l'Institut Fourier PY - 2000 SP - 1073 EP - 1098 VL - 50 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1785/ DO - 10.5802/aif.1785 LA - en ID - AIF_2000__50_4_1073_0 ER -
%0 Journal Article %A Friedlander, Eric M. %T Relative Chow correspondences and the Griffiths group %J Annales de l'Institut Fourier %D 2000 %P 1073-1098 %V 50 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1785/ %R 10.5802/aif.1785 %G en %F AIF_2000__50_4_1073_0
Friedlander, Eric M. Relative Chow correspondences and the Griffiths group. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1073-1098. doi : 10.5802/aif.1785. https://aif.centre-mersenne.org/articles/10.5802/aif.1785/
[A] Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. | MR | Zbl
,[AF] The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. | MR | Zbl
and ,[B] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. | MR | Zbl
,[De] Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. | EuDML | Numdam | MR | Zbl
,[D] Lectures on Algebraic Topology, Springer-Verlag, 1972. | MR | Zbl
,[F1] Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. | EuDML | Numdam | MR | Zbl
,[F2] Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. | EuDML | Numdam | MR | Zbl
,[F3] Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. | MR | Zbl
,[F4] Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. | EuDML | Numdam | MR | Zbl
,[FG] Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. | MR | Zbl
and ,[FL1] A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. | MR | Zbl
and ,[FL2] Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. | MR | Zbl
and ,[FL3] Graph mappings and Poincaré duality, preprint.
and ,[FM1] Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). | MR | Zbl
and ,[FM2] Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. | Numdam | MR | Zbl
and ,[FW] Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. | Zbl
and ,[H] Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. | MR | Zbl
,[LiF] Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. | MR | Zbl
,[N] Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. | MR | Zbl
,[Sp] Algebraic Topology, McGraw-Hill, 1966. | MR | Zbl
,[SV] Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. | MR | Zbl
and ,Cité par Sources :