Relative Chow correspondences and the Griffiths group
Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1073-1098.

Une version relative de constructions récentes et le théorème de Lefschetz rationnel de Nori fournissent des exemples intéressants de la filtration topologique sur les cycles algébriques.

A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.

@article{AIF_2000__50_4_1073_0,
     author = {Friedlander, Eric M.},
     title = {Relative {Chow} correspondences and the {Griffiths} group},
     journal = {Annales de l'Institut Fourier},
     pages = {1073--1098},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {4},
     year = {2000},
     doi = {10.5802/aif.1785},
     mrnumber = {1799738},
     zbl = {0960.14005},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1785/}
}
TY  - JOUR
AU  - Friedlander, Eric M.
TI  - Relative Chow correspondences and the Griffiths group
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1073
EP  - 1098
VL  - 50
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1785/
DO  - 10.5802/aif.1785
LA  - en
ID  - AIF_2000__50_4_1073_0
ER  - 
%0 Journal Article
%A Friedlander, Eric M.
%T Relative Chow correspondences and the Griffiths group
%J Annales de l'Institut Fourier
%D 2000
%P 1073-1098
%V 50
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1785/
%R 10.5802/aif.1785
%G en
%F AIF_2000__50_4_1073_0
Friedlander, Eric M. Relative Chow correspondences and the Griffiths group. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1073-1098. doi : 10.5802/aif.1785. https://aif.centre-mersenne.org/articles/10.5802/aif.1785/

[A] F. Almgren, Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. | MR | Zbl

[AF] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. | MR | Zbl

[B] D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. | MR | Zbl

[De] P. Deligne, Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. | EuDML | Numdam | MR | Zbl

[D] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. | MR | Zbl

[F1] E. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. | EuDML | Numdam | MR | Zbl

[F2] E. Friedlander, Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. | EuDML | Numdam | MR | Zbl

[F3] E. Friedlander, Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. | MR | Zbl

[F4] E. Friedlander, Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. | EuDML | Numdam | MR | Zbl

[FG] E. Friedlander and O. Gabber, Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. | MR | Zbl

[FL1] E. Friedlander and H.B. Lawson, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. | MR | Zbl

[FL2] E. Friedlander and H.B. Lawson, Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. | MR | Zbl

[FL3] E. Friedlander and H.B. Lawson, Graph mappings and Poincaré duality, preprint.

[FM1] E. Friedlander and B. Mazur, Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). | MR | Zbl

[FM2] E. Friedlander and B. Mazur, Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. | Numdam | MR | Zbl

[FW] E. Friedlander and M. Walker, Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. | Zbl

[H] H. Hironaka, Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. | MR | Zbl

[LiF] P. Lima-Filho, Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. | MR | Zbl

[N] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. | MR | Zbl

[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, 1966. | MR | Zbl

[SV] A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. | MR | Zbl

Cité par Sources :