Soit un corps ultramétrique complet algébriquement clos de caractéristique nulle. On applique la théorie de Nevanlinna -adique aux équations de la forme , où , et sont des fonctions méromorphes dans ou dans un disque ouvert, ainsi qu’à l’équation de Yoshida.
Let be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We apply the -adic Nevanlinna theory to functional equations of the form , where , are meromorphic functions in , or in an “open disk”, satisfying conditions on the order of its zeros and poles. In various cases we show that and must be constant when they are meromorphic in all , or they must be quotients of bounded functions when they are meromorphic in an “open disk”. In particular, we have an easy way to obtain again Picard-Berkovich’s theorem for curves of genus and . These results apply to equations , when are meromorphic functions, or entire functions in or analytic functions in an “open disk”. We finally apply the method to Yoshida’s equation , when , and we describe the only case where solutions exist: must be a polynomial of the form where divides , and then the solutions are the functions of the form , with .
@article{AIF_2000__50_3_751_0, author = {Boutabaa, Abdelbaki and Escassut, Alain}, title = {Applications of the $p$-adic {Nevanlinna} theory to functional equations}, journal = {Annales de l'Institut Fourier}, pages = {751--766}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1771}, zbl = {1063.30043}, mrnumber = {2002a:30073}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1771/} }
TY - JOUR AU - Boutabaa, Abdelbaki AU - Escassut, Alain TI - Applications of the $p$-adic Nevanlinna theory to functional equations JO - Annales de l'Institut Fourier PY - 2000 SP - 751 EP - 766 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1771/ DO - 10.5802/aif.1771 LA - en ID - AIF_2000__50_3_751_0 ER -
%0 Journal Article %A Boutabaa, Abdelbaki %A Escassut, Alain %T Applications of the $p$-adic Nevanlinna theory to functional equations %J Annales de l'Institut Fourier %D 2000 %P 751-766 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1771/ %R 10.5802/aif.1771 %G en %F AIF_2000__50_3_751_0
Boutabaa, Abdelbaki; Escassut, Alain. Applications of the $p$-adic Nevanlinna theory to functional equations. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 751-766. doi : 10.5802/aif.1771. https://aif.centre-mersenne.org/articles/10.5802/aif.1771/
[1] Spectral Theory and Analytic Geometry over Non-archimedean Fields, AMS Surveys and Monographs, 33 (1990). | MR | Zbl
,[2] Théorie de Nevanlinna p-adique, Manuscripta Mathematica, 67 (1990), 251-269. | MR | Zbl
,[3] An Improvement of the p-adic Nevanlinna Theory and Application to Meromorphic Functions, Lecture Notes in Pure and Applied Mathematics n° 207 (Marcel Dekker). | MR | Zbl
, ,[4] On some p-adic functional equations, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker), 192 (1997), 49-59. | MR | Zbl
,[5] On uniqueness of p-adic entire functions, Indagationes Mathematicae, 8 (1997), 145-155. | MR | Zbl
, , and ,[6] Urs and ursim for p-adic unbounded analytic functions inside a disk, (preprint).
, ,[7] Property f— (S) = g— (S) for p-adic entire and meromorphic functions, to appear in Rendiconti del Circolo Matematico di Palermo.
, ,[8] Non-archimedean analytic curves in Abelian varieties, Math. Ann., 300 (1994), 393-404. | MR | Zbl
,[9] Analytic Elements in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore, 1995. | MR | Zbl
,[10] Urs, ursim, and non-urs, Journal of Number Theory, 75 (1999), 133-144. | MR | Zbl
, , and ,[11] On the equation fn + gn = 1, Bull. Amer. Math. Soc., 72 (1966), 86-88. | MR | Zbl
,[12] An Introduction to Differential Algebra, Actualités Scientifiques et Industrielles 1251, Hermann, Paris (1957). | MR | Zbl
,[13] Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929. | JFM
,[14] Traité d'analyse II, Gauthier-Villars, Paris, 1925.
,Cité par Sources :