Range of the horocyclic Radon transform on trees
Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 211-234.

Dans cet article on étudie la transformation de Radon R sur l’ensemble des horocycles d’un arbre homogène T, et l’on décrit l’image de divers espaces fonctionnels. On montre que l’espace des fonctions à support compact sur qui satisfont à deux conditions de Radon décrites explicitement est égal à l’image par R de l’espace des fonctions à support fini sur T. On étend ces résultats à des espaces de fonctions à décroissance appropriée sur T, dont l’image par R est décrite par des conditions de décroissance et contient des distributions sur qui ne sont pas définies ponctuellement. On montre aussi que R est injective sur ces espaces. Les formules sont exprimées de façon invariante en termes d’une mesure sur qui est préservée par le groupe des automorphismes de T.

In this paper we study the Radon transform R on the set of horocycles of a homogeneous tree T, and describe its image on various function spaces. We show that the functions of compact support on that satisfy two explicit Radon conditions constitute the image under R of functions of finite support on T. We extend these results to spaces of functions with suitable decay on T, whose image under R satisfies corresponding decay conditions and contains distributions on that are not defined pointwise. We also show that R is one-to-one on these spaces. Formulas are expressed in an invariant fashion in terms of a measure on preserved by the full automorphism group of T.

@article{AIF_2000__50_1_211_0,
     author = {Tarabusi, Enrico Casadio and Cohen, Joel M. and Colonna, Flavia},
     title = {Range of the horocyclic {Radon} transform on trees},
     journal = {Annales de l'Institut Fourier},
     pages = {211--234},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {1},
     year = {2000},
     doi = {10.5802/aif.1752},
     zbl = {0944.44002},
     mrnumber = {2001g:44003},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1752/}
}
TY  - JOUR
AU  - Tarabusi, Enrico Casadio
AU  - Cohen, Joel M.
AU  - Colonna, Flavia
TI  - Range of the horocyclic Radon transform on trees
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 211
EP  - 234
VL  - 50
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1752/
DO  - 10.5802/aif.1752
LA  - en
ID  - AIF_2000__50_1_211_0
ER  - 
%0 Journal Article
%A Tarabusi, Enrico Casadio
%A Cohen, Joel M.
%A Colonna, Flavia
%T Range of the horocyclic Radon transform on trees
%J Annales de l'Institut Fourier
%D 2000
%P 211-234
%V 50
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1752/
%R 10.5802/aif.1752
%G en
%F AIF_2000__50_1_211_0
Tarabusi, Enrico Casadio; Cohen, Joel M.; Colonna, Flavia. Range of the horocyclic Radon transform on trees. Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 211-234. doi : 10.5802/aif.1752. https://aif.centre-mersenne.org/articles/10.5802/aif.1752/

[A] G. Ahumada Bustamante, Analyse harmonique sur l'espace des chemins d'un arbre, Thèse de Doctorat d'État, Université de Paris-Sud (Orsay), 1988. | MR

[BC] C.A. Berenstein, E. Casadio Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM. J. Appl. Math., 56 (1996), 755-764. | MR | Zbl

[BCCP] C.A. Berenstein, E. Casadio Tarabusi, J.M. Cohen, M.A. Picardello, Integral geometry on trees, Amer. J. Math., 113 (1991), 441-470. | MR | Zbl

[BFPp] W. Betori, J. Faraut, M. Pagliacci, The horicycles of a tree and the Radon transform, preliminary version of [BFP].

[BFP] W. Betori, J. Faraut, M. Pagliacci, An inversion formula for the Radon transform on trees, Math. Z., 201 (1989), 327-337. | EuDML | MR | Zbl

[BP] W. Betori, M. Pagliacci, The Radon transform on trees, Boll. Un. Mat. Ital. B (6), 5 (1986), 267-277. | MR | Zbl

[CCC] E. Casadio Tarabusi, J.M. Cohen, F. Colonna, Characterization of the range of the Radon transform on homogeneous trees, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 11-17. | EuDML | MR | Zbl

[CCP1] E. Casadio Tarabusi, J.M. Cohen, A.M. Picardello, The horocyclic Radon transform on non-homogeneous trees, Israel J. Math., 78 (1992), 363-380. | MR | Zbl

[CCP2] E. Casadio Tarabusi, J.M. Cohen, A.M. Picardello, Range of the X-ray transform on trees, Adv. Math., 109 (1999), 153-167. | MR | Zbl

[CC] J.M. Cohen, F. Colonna, The functional analysis of the X-ray transform on trees, Adv. in Appl. Math., 14 (1993), 123-138. | MR | Zbl

[CD] J.M. Cohen, L. De Michele, The radial Fourier-Stieltjes algebra of free groups, Contemp. Math., 10 (1982), 33-40. | MR | Zbl

[CMS] M.G. Cowling, S. Meda, A.G. Setti, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math., 16 (1998), 385-423. | MR | Zbl

[CS] M.G. Cowling, A.G. Setti, The range of the Helgason-Fourier transformation on homogeneous trees, Bull. Austral. Math. Soc., 59 (1999), 237-246. | MR | Zbl

[H] S. Helgason, The Radon transform, Progr. Math., 5, Birkhäuser, Boston, 1980. | MR | Zbl

[R] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl, 69 (1917), 262-277, reprinted in [H, pp. 177-192]. | JFM

Cité par Sources :