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RANGE OF THE HOROCYCLIC
RADON TRANSFORM ON TREES

by Enrico CASADIO TARABUSI,
Joel M. COHEN, Flavia COLONNA

Introduction.

The Radon transform (RT for short), in its original definition by
Radon [R], associates to each sufficiently nice function on R2 its one-
dimensional Lebesgue integrals along all affine straight lines. This transform
has been widely studied in the last few decades for its highly applicable na-
ture as well as intrinsic interest, both leading to a variety of generalizations.

The other natural ambient spaces of the same dimension are the
sphere §2, its two-to-one quotient P2]^, and the Poincare disk H2, i.e., all
the two-dimensional two-point-homogeneous spaces. On these spaces the
RT has been studied by Helgason [H] and several others. An instance of
application to tomography is described in [BC].

Lines in R2 have a twofold nature of (maximal) geodesies and of
horocycles, so in H2 their role can be played by two essentially different
kinds of one-dimensional submanifolds: geodesies and horocycles, giving
rise to two different RTs on H2.

In recent years discretizations have received considerable attention.
Homogeneous trees are widely regarded as discrete counterparts of HI2, as
well as objects of thorough study in harmonic analysis in their own right.
Exactly like H2, they feature two distinct kinds of RTs, namely the geodesic

Keywords: Radon transform - Homogeneous trees - Horocycles - Range characterizations
- Distributions.
Math. classification: 44A12 - 05C05 - 43A85.
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-RT (also called X-ray transform, since it is reminiscent of the CAT-scan
procedure), and the horocyclic RT. Several of the standard RT issues in this
setting have been investigated over time by various authors: e.g., [BCCP],
[A] for injectivity and inversion, [CCP2] for range characterization, and
[CC] for function space setting for the geodesic RT; [BP], [BFP], [CCP1] for
injectivity and inversion of the horocyclic RT—part of the results therein
are rewritten in [CMS] for the Abel transform, a multiple of this RT. A
related issue, the Helgason-Fourier transform, is studied in [CS].

In the present paper, whose results were announced in [CCC], we
describe the range of the horocyclic RT R on a homogeneous tree T. We
first state the two Radon conditions, families of natural explicit relations
(one of which had already been observed in [BFPp], [BFP] for radial
functions) on functions on the space H of horocycles of T. We then
show that, among compactly supported functions on H, these conditions
completely characterize the range of R on finitely supported functions on
(the set of vertices of) T. Similar descriptions are valid for the range of
R on larger function spaces, although distributions on H need then to
be taken into account. In Theorem 5.5 we show that R is one-to-one on
these larger function spaces, thus extending [CCP1, Theorem 3.1]. The
boundary ^ of T does not carry any finite Borel measure invariant under
the full automorphism group Aut(T) of T, and H factors (with respect
to a reference vertex) as fl. x Z. Nevertheless, a natural Aut(T)-invariant
measure on H can be used to express our formulas in an invariant fashion.

In the non-homogeneous case, which we study in a forthcoming
paper, analogous results carry over with substantially more complicated
expressions of the second Radon condition and, in the non-compact case,
of the decay conditions.

We wish to thank Hillel Furstenberg for many useful conversations
and for his insights into the problem.

1. Background and notation.

Let T be a tree, i.e., an undirected, connected, loop-free graph.
Especially with reference to functions, we shall identify T with the set
V of its vertices, and let E C V x V be the set of edges. If (v, w) G E we
say that v, w are neighbors, and write v ~ w (not an equivalence relation).
Given v,w e T, the path from v to w is the unique finite sequence of
pairwise distinct vertices v=vo,v-^,... ,Vn=w such that vj--^ ~ vj for all
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RANGE OF THE RADON TRANSFORM 213

j = 1, . . . , n. We say that n is the distance d{v^ w) between v and w, also
referred to as the length [w^ of w with respect to v.

We shall assume throughout that T is homogeneous of degree q-\- 1
for some integer q ^ 2, that is, each vertex has exactly g + 1 neighbors; in
particular, T is infinite. The group Aut(T) of automorphisms of T (i.e., of
distance preserving maps of T onto itself) acts transitively on it. It can be
useful to identify T with the free product of q + 1 copies of Z2, or (for q
odd) of (q + 1)/2 copies of Z. In either case, two words v, w are neighbors
if v~lw is a generator. The left action embeds T as a proper transitive
subgroup of Aut(T).

A ray starting at v e T is a one-sided infinite sequence of distinct
vertices V=VQ^ v i , . . . such that Vj-i ~ vj. The boundary of T is the space
^l of ends, the classes of rays under the equivalence relation ^ generated
by the unit shift: {vo? ^i, • • •} ^ {^1^2? • • •}• If we fix u C T, then f2 can
be identified with the set of rays beginning at u. Each uo € f^ induces an
orientation on the edges ofT as follows: an edge (r, w) is positively oriented
if there exists a representative ray in uj which starts at v and contains w. For
every uj G ^ and v,w eT define the horocycle index ^(w) as the number
of positively oriented edges minus the number of negatively oriented edges
(with respect to uj) in the path from v to w. In particular ^(w) == [w^ if w
is in the ray from v to c<;, and ^{v) = 0. It follows from the definitions that
the integer K^(v) lies in the interval [— [z^ , [v^} at even distance from the
endpoints. If w is another vertex, then ^(w) = ̂ (v) + ^(w).

For uj 6 f^, u G T, and n € Z, the set

/ ^= {w€T : <(w)=n}

is the horocyde through cj of index n with respect to u. We use [CCP1]
as a general reference for results. The vertices of a horocycle all lie at even
distance from each other. Denote by H the space of horocycles of T. It is
immediately seen that the set of horocycles through a fixed uj G ^ does
not depend on the choice of the reference vertex n, but indices do. To be
precise, if v € T then

(1.1) <n=^,n+^(")-

Indeed we have

Remark 1.1. — The map (c<;, n) ^—> h^ ^ is a bijection of ^ x Z onto 7i
whose dependence on the choice of u shows solely as a shift in the second
factor. D

TOME 50 (2000), FASCICULE 1
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Let f2^ be the set of uj € ^ such that the ray representing uj and
beginning at u contains v. There is a compact topology on f^ (independent
of u) given by letting {f2^ : v € T} be a base for the open (and closed)
sets. With this topology, ^ is totally disconnected, in fact it is a Cantor
set. There is a measure ^u on fl, given by

(L2) "^''^ "•"•—{^w- î ;2;
is the number of vertices of distance n from n. The measure ^u is invariant
under the isotropy subgroup at u of Aut(T). The infinitesimal relation

(1.3) d^u{uJ)=q<wd^{uJ)

may be checked on any Q,^ containing uj and such that \w^ is sufficiently
large, so that f^ = f2^, and |w|^ = [w^ + i^{u). There is a distance on ^
given by ^(ci^ci/) = /^(^), where f^ is the smallest basic set containing
both c<;,o/.

In view of Remark 1.1, the topology that Ji inherits as a product of
Z (with the discrete topology) and fl is independent of the choice of u. A
base is {H^ : v e T, n € Z}, where

H^ =^x {n} = {h^ : ^ C ̂ }.

The product measure (used, e.g., in [CCP1]) of the counting measure
on Z and of/^ on f^, however, is only invariant under the isotropy subgroup
ofAut(T) at u. Instead, i f^ is the measure on Z given by ^({n}) = (f\ then
the product measure v = //a x ^ (cf. [BFP]) does not depend on the choice
ofzA, and is therefore invariant under the whole Aut(T). The corresponding
infinitesimal relation is

d^h^)=qnd^u^.

Indeed, for v 6 T, the right-hand side equals

qnqKv^d^lv^)=d^h^^

by (1.3), and then (1.1) shows the invariance.

A distance on "H which is invariant under the isotropy subgroup at u
is given by (^{h^ ̂  h^, ^,) = \n - n'| + cr(a;,o/). An analogue of (1.1) is
then given by

(1.4) H^ = H^^^^v_^w for u not lying on the path from w to v.

ANNALES DE L'lNSTITUT FOURIER



RANGE OF THE RADON TRANSFORM 215

Note that, for u not lying on the path from w to v, we have ̂  = f^.

We shall fix a vertex e as root throughout, although most of the
statements below will not depend on its choice. We shall also omit the
superscript e in ]< ̂ /^^),^,n,^.

For a; e ̂  and n ̂  0, denote by ̂  the n-th vertex of the ray starting
at e in the class a;. Similarly, for v e T and 0 ^ n ^ |v|, denote by ̂  the
n-th vertex of the path from e to v. For v e T and n ^ |z>|, let

Ai(v) = {n e r: H = n, n^ = ̂ }

be the set of descendants of v of length n. Then the number of its elements
is

(1^) #D^v) = ̂ ,
CH

where c^ is given by (1.2). To avoid exceptions to subsequent formulas, set
Dn{v) = 0 if n < \v\. If v -^ e, the parent of z» is V = z^|_i. A family is
a set of the form D^^{v), i.e., the set of all the vertices that share the
same parent. The base element ̂  = {uj e ^ : uj^\ = v} is the boundary
of

S^ = {u e T : \u\^ \v\, u^ =v}= Y[ Dr,(v).
n^\v\

Remark 1.2. — Every horocycle decomposes into a disjoint union as
00

U [Dn^2k{^n+k} \ ̂ n+2fc(^n+fc+l)] if n > 0,
k=0/? - { k=o'"c^n — \ oooo
U [D-n+2k(^k) \ D_n+2k(^k+l)} if U ^ 0,

k=0

for uj e ^t. In particular, min^/^, ^ |v| = |n|.

Furthermore, D^^t) \ DN^W ) is a disjoint union of families for
A^ > t + 1, so that any horocycle can be expressed as a disjoint union of
families and at most q single vertices. Q

For v 6 T, we may decompose f2 as

^ = U ̂ t) where ̂  = [uj e ̂  : ̂ ) = 2^ - |^[}
t=0

(1.6) = J ^< \ ^t+i for 0 ^ ^ < H
1^ for^=|2; | .

TOME 50 (2000), FASCICULE 1



216 E. CASADIO TARABUSI, J.M. COHEN, F. COLONNA

DEFINITION 1.3. — The horocyclic Radon transform R on T is defined
as follows: iff G L^T) then Rf <E L°°(H) is given by

Rf(h) = ̂  f(v) for every h € U.
veh

Since f is an ^-function, it is not necessary to specify the ordering of the
sum. We may define Rf even when f is not in ^(T), by specifying the
order of summation:

00

Rf(h) = ̂  ̂  f(v) for every h e H,
m==0 \v\=m

veh

as long as the series converges for all h € 7i.

In §4 we shall show that the image of R on the space of functions of
finite support is the set of functions of compact support on 'H that satisfy
the Radon conditions, described in §3. We shall see that if / € ^(T) then
Rf is a continuous function satisfying the Radon conditions. Yet there are
continuous functions on 7Y satisfying these conditions that are of the form
Rf for / ^ ^(T) (cf. Example 3.7). The ^-condition, however, is the only
simply-stated condition on / that ensures that Rf is defined as a function
on 'H. We need to extend the definition of Rf to include generalizations of
functions—distributions—on 7Y, and we do so in §2 in terms of the Aut(T)-
invariant measure described above.

In §3, in order to extend the result to the case of non-compact support,
we introduce the space As (for 0 < s < 1) of functions on T that satisfy
a decay condition depending on s. Likewise, we define the space Bs of
distributions on H that satisfy a corresponding decay condition and the
Radon conditions. Both As and Bs are increasing one-parameter families,
and As ^ ^(T) for s ^ 1/q by Remark 3.6 (the containment is strict
by Example 3.7). In §5 we shall show that if s < l / - y / q then R is one-to-one
on As and the range is precisely Bs. Moreover, we exhibit an example of
a function in As whose Radon transform (belonging to Bs by the above)
cannot be evaluated at any horocycle, and thus can be viewed only as a
distribution.

2. The distribution-valued Radon transform.

Let J^i^f^H) be the set of measurable subsets of 7Y of positive v
measure.

ANNALES DE L'lNSTITUT FOURIER
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DEFINITION 2.1.— A distribution 0 on H is a function on M^(H)
such that the product vcf) is a finitely additive complex measure.

Remark 2.2. — We have chosen to normalize distributions requiring
additivity of v^> rather than of (j), which is more customary, in order to
stress the analogy between forthcoming formulas for functions and those
for distributions. D

A distribution (f) is completely determined by its values on the base
elements Hu,n- Since

f^) ifH=i,
^..n)=< y1 .

v ""'") if H > 1,I g
such values must satisfy the averaging property

{ —— E 4>{Hv,n) ifu=e,
,/„ „ g+l|u|=i

4>{Hu,n) = 1
- E W,n) ifu^e,
Q v~=u

or more generally
(2.1)
<t>{H^n) = ..^ . x ^ 0(^,n) for every u 6 T, m ̂  |^|, n e Z.

TT-'-^m^) T-. { ^^'e•c)yn(^)

A locally integrable measurable function 0 on 7Y induces a distribution <^
on 7^ by

(J){H) = ——— f (f){K) dv(h) for every H e M^W.U { H ) J H
In particular, on base elements
(2.2)

W.n) = ———^ f W^n) d^(^ for every v € T, ̂  € ^, n C Z.
A1 ^"u/ ^^^

Conversely, if 0 is induced by a continuous function <^, then (f) can be
recovered from (f> by

0(^,n) = lim (J)(H^^^n)'
k—^oo

We shall henceforth drop the tilde and identify a function on Ji with the
corresponding distribution.

TOME 50 (2000), FASCICULE 1



218 E. CASADIO TARABUSI, J.M. COHEN, F. COLONNA

We now wish to define the Radon transform for a wider class of
functions / on T than those that are summable on each horocycle, allowing
Rf to be a distribution on H that is not necessarily induced by a function.
Let \v denote the characteristic function of the singleton {v}. Note that,
if / is any function on T, its m-truncation

f{m) = ̂  f(v)Xv

|v[^m

has finite support, therefore Rf^rn) exists in the pointwise sense and is
a locally integrable measurable function on 7^, in fact it is uniformly
continuous (cf. Proposition 3.3 below).

DEFINITION 2.3. — Let f be a function on T. Its horocyclic Radon
transform Rf is the distribution given by

00

Rf(H) = lim Rf(m}{H) = ̂  ̂  f(v)R^{H} for every H e M+(H),
m—>oo v ' z—^ z—'

m==0 |i;|=m,

provided the limit exists (i.e., the series is convergent).

If Rf is a function then Definition 2.3 reduces to Definition 1.3.
Although the length \v\ of v e T refers to the root e, we now prove:

PROPOSITION 2.4. — Given a function f on T, the existence and the
values of Rf are independent of the root e.

Proof. — Let e/ be another root. We shall show that, for \u\ large
enough and n € Z arbitrary, Rf{Hu,n) is defined with respect to the root
e if and only if it is with respect to e', and, if so, the assigned value is the
same. This is enough because for any N the set {Hu,n '. \u\ ̂  N, n e Z}
is itself a base for the measurable subsets of 7~i.

Choose u not in the path from e to e'. Then the parent of u with
respect to e or to e' is the same, thus Su and fl,u are the same regardless
of whether the root is e or e'. For each n € Z only finitely many v ^ Su
belong to some (hence all) h € Hu,n-> i-e., satisfy R\v(Hu,n) ¥" 0. Indeed,
if u lies on the ray from v to any uj C ^lu then ^(v) == \u\ — d(u^v), so if
this horocycle index equals n, then every such v must be at fixed distance
\u\ — n from u.

ANNALES DE L'lNSTITUT FOURIER



RANGE OF THE RADON TRANSFORM 219

If i = \u\ - [< then K =\v\-£ for all v € S^ and by (1.4) we
have Hu,n = H ^ - p - Thus

E E fWXv(H^n) = ̂  f(y)RXv(Hn,n)
m=0 |v|=m ^6^

+ E E fWxv(H^)
rn=0 \v\=m

v€Su

= E fWx^n-e)
v(^S^

oo

+ E E fW^H^n-e)
m=0 ^e'^_^

v<ESu

00= E E fWx^H^)
since, by the above, in each sum for v i Sn there are only finitely many
non-zero terms. D

LEMMA 2.5. — For u, v e T and n C Z we have

r ^ - i
gl-l-(n+l.l)/2 if ^ e ̂ , n ̂  e, n - |^| even,

<7
,1^1-M

and 2 |'u| — |^| ^ n < \v\,
^l-lvl i f^e5^,^e,n==H,

.̂(̂ ,n) = -j ^9-(n+lvl)/2 if v^ u = e, n - H even, |n| < H

^-(n+|^|)/2 ^ ^ ^ ^ ^ ^-u = e, |n| = |v|

i f v ^ S n O r v - e ,
and n == |n| - d(u,v),
otherwise.

^+1
1

Proof. — The equality

( C\ Q\ T-) / rr'y \ j ^̂ ' == ^1

^.JJ Hxv^u,m) = ^ o if m ̂  0 for every "''" e T'

follows directly from (2.2). Ifv^ Sn, by (1.4) and (2.3) we have

WHn,n) = RX.(H^^ ) = {1 if"=H- ri(",^,
1 0 otherwise.

TOME 50 (2000), FASCICULE 1



220 E. CASADIO TARABUSI, J.M. COHEN, F. COLONNA

Instead, if v e Sn, then we may decompose H^n = ̂  Hw^,n, where the
vertices w^ are all the immediate descendants of the vertices on the path
from u to v which are not themselves on this path. Since v ^ Sw . for any
j, we can apply the previous case and the additivity of vR\v to get

^-P^n ^= V" ^RX.(H^) = ̂  -^-R^H^) = ^\v\^u,n) — / , —————^Xv^w^^n) = ^ , —
-; Iw/.J i i . C\

^wu) Iw^l-^w^^n0!^)!

which yields the result. Q

DEFINITION 2.6. — In the sequel, for a function f on T we shall use
the shorthand

(2.4) f(v,n) = V f(u) for v e T and n^\v\.
^^ ,eD.(.)

In particular, f(v) = f(v,\v\). For a non-negative integer N , the N-
radialization f^ (with respect to e) of a function f on T is given by

f^-[fW if\v\<^N,
^^"t/^H) if\v\^N.

If PN is the left-invariant Haar measure on the compact group

AutN = {g € Aut(T) : g(v) = v whenever |-L'| ^ TV},

normalized so that p^^Aut^) = 1, then /N = f^^ (f o g) dp^ (g). We
say that f is TV-radial if f^ = f, i.e., if f(v) depend^ only on VN and \v\
whenever \v\ ^ N. A 0-radial function is usually called a radial function
[CD].

The TV-radialization 0^ of a distribution (/) on H is given by

f9 ^ /A (U \ r^(^,n) if\U\<^N,
\ z " ^ ) VN^u.n) = \ ^TT \ • r \ \

\(p{H^^) lf\U\ > N ,

and that of a function (f) on7{ by

^(^n) = -7,.—r / (^(h^^d^).
^ ^ N ) J^^

We say that a distribution (f) is TV-radial if <^ = 0, i.e., if (f)(Hu,n)
depends only on UN and n whenever \u\ ̂  N . In this case it is immediate
that (j) is in fact (induced by) a function for which 0(/^,n) depends only
on UN and n—indeed, (^(^,n) = <^(^^,n). Conversely, every function
with this property induces an N-radial distribution. We have (J)N =
SA^(t)09)dpN(g).

ANNALES DE L'lNSTITUT FOURIER



RANGE OF THE RADON TRANSFORM 221

For a non-negative integer M, a function f on T is M-supported if its
support is contained in {v € T : \v\ ^ M}. A distribution (respectively a
function) (f) on U is M-supported if whenever |n| > M we have cf>(Hu n) = 0
for all u e T (respectively (f){h^^) = 0 for all uj e ̂ ).

A continuous function (f) on U is M-supported if and only if its induced
distribution is. A function / on T is finitely supported, or a distribution 0
on U is compactly supported, if and only if it is M-supported for some M.

Remark 2.7.— Since <M^n,n) = W.,n) for all N ^ H, we have
(f) = limA^oo (f)^ in the sense of distributions, and, if 0 is a continuous
function, the limit holds uniformly on compact sets. Of course / =
lim^^oo f^ pointwise, or equivalently, uniformly on compact sets. D

Remark 2.8.— The characteristic function ̂  of v € T is H-radial
and H-supported. It will follow from Proposition 2.9 below that its Radon
transform R\^ is also. m

PROPOSITION 2.9. — If a function f on T is such that Rf is denned,
and ifN ^ 0, then Rf^ is denned and equals (Rf)^. In particular, iff is
N-radial then so is Rf. Similarly, iff is M-supported then so is Rf.

Proof. — Assume first that / has finite support. Since R is equivari-
ant for the action of Aut(T) on functions on T and distributions on U, we
have

W)N = I (Rf o g) dpN{g) = f R(fo g) dp^^g)
^AutN */AutN

=R I { f ° g ) d p N ( g ) = R f N ^
^AutN

where the third equality holds because \R(f o g)(h)\ = \Rf(g(h))\ ^ ||/||^
for all h € H. (A non-group-theoretic proof can be achieved by working
out the case f = \y using Lemma 2.5.)

If / is an arbitrary function on T, then it is straightforward to verify
that m-truncation commutes with TV-radialization, i.e., (fN)(m) = (f(m})N
for every TV, m ̂  0. Since f^ has finite support we can apply the previous
case, and obtain for every n C Z and \u\ ̂  N that

R(fN\m)(H^) = ̂ (/^M^n) = W^m))N(H^n) = Rf^(H^^).

The limit for m -^ oo is then %)(^,) = Rf{H^^} = WM^,n).

If / is M-supported then Rf(h^^n) = 0 for \n\ > M, because the
length of every v e h^^ is at least \n\. So Rf is M-supported. D

TOME 50 (2000), FASCICULE 1
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Example 2.10. — Fix uj e ̂ , and let / be the function on T given by

f(v) = [ ^ if v = ̂ 2j for j > 0,
10 otherwise.

The Radon transform Rf is defined as a function on 7Y, because each
horocycle intersects the ray {0:0, ̂ i,...} in at most two vertices. How-
ever, Rf is not defined in the distribution sense, since by Lemma 2.5
^X^A^o) = 9-7((2 - 1)/(<7 + 1) for every j ̂  1, whence Rf(He,o) would
be the limit for m —^ oo of

m _

^ /(^^(^^^E^^—^-"—^
H^2m j=l l/ ' 1 g ' 1

In other words, the function Rf is not locally integrable.

3. The Radon and decay conditions.

DEFINITION 3.1.— For a distribution 0 on H the Radon conditions
are:

(Ri) ^^^(Hu^) is independent o fneT.
n

(R2) <W-J = ̂ W,J ^ every z; C T and n C Z.
If both conditions are satisfied we say that (f) is R-compatible.

Remark 3.2.— Condition (Ri) is root-independent, since it can be
equivalently stated restricting it to |n| large enough. Indeed, the condition
for a given u follows easily, using (2.1), from the condition for its descen-
dants. If (f) is a continuous function on H, letting u approach an arbitrary
uj € ^l (i.e., u = LJk with k —> oo), condition (Ri) yields

(R'l) ^ 0(^,n) is independent of uj e f^,
n

and this in turn implies (Ri) by (2.2) with v = e.

Condition (Rs) for radial functions appeared in [BFPp, before Theo-
rem 4.5], although in the final version [BFP, Proof of Theorem 4.1] it was
stated only for a specific function.

Condition (Ra) is obviously also root-independent. It may be rewrit-
ten in terms of the values at the base elements Hy, n as follows:

\v\

q(Q + l) ,̂-n-H) + ̂  ̂ [^(^-n+^-H) - 0(^,-n+2t-|.|-2)]
t=l
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RANGE OF THE RADON TRANSFORM 223

/ H \
= <H <?(<?+ l)0(^e,n-M) + ̂ ^(^^-H) - 0(^,n+2*-|.|-2)]

v t=l /

(R^) for every v eT and n € Z.

This expression is obtained using the additivity of ^0, the decomposi-
tion (1.6) which yields

\v\

^v,n = J^[(^t,n+2t-|v| \ ^t+i,n+2t-|v|)
t=0

(where we formally set H y , , rn = 0)? the observation that -^u^i,m ^
IIvt^m f011 every m e Z and ^ = 0 , . . . , |z?|, and finally using (1.2). D

PROPOSITION 3.3.— If f C ^(T), then Rf is R-compatible and
uniformly continuous on Ji. The constant value in (Ri) is ̂ ^^ f(v).

Proof.— Given 6 > 0, choose TV ^ 0 such that Ij^jy 1/^)1 < 6/2-
Ifct;,^' € ^2 have distance less than 1/c^v, then they are both in fly for some
v € T of length TV. Then the horocycles /^m^o^n differ only in vertices
whose lengths are greater than TV, thus \Rf(h^^n) — Rf{h^^n)\ < ^ ' So Rf
is uniformly continuous.

The horocycles through a given uj G ^ partition T, since every
v e T belongs to exactly one such horocycle, namely ^,/^(v)- Therefore
E.CT /(^) = En Rf(h^n). and (R'i) follows.

We shall prove (R^) for 0 = Rf when f = Xu for arbitrary u € T, and
then obtain it for general / € ^(T) by linearity. Because condition (R2)
(and hence (R^)) is root-independent, we can choose e = u. By (2.3), the
only non-vanishing terms are those in which the second subscript is zero.
Such terms are there only if \n\ is less than or equal to \v\ and has its same
parity. The verification of (R^) in this case is straightforward. D

LEMMA 3.4. — If a distribution (/) on Ji satisfies either of the Radon
conditions, then so does its N-radialization (J)N for all N ^ 0.

Proof.— The statement for (Ri) follows from the definitions. For
n G Z, the equality in (R^) at v for (/)N is the same as for (f) if \v\ ^ N\
while for \v\ ^ N it is the average of that for (f) at v ' over all v ' C D\^(VN).
Indeed, for 0 ^ ̂  TV and every such v ' we then have v[ = t^ whereas for
N ^t^ H, by (2.1) and (1.5),

<M ,̂m) = W^m) = ̂ (^^). D
C\v\
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DEFINITION 3.5. — For 0 < s < 1 let

T>s = {numerical sequences (an)n^no '• limsup ̂ n^^ ^ s}
n—>oo

= \ (^n)n^no : tne radius of convergence of the series ^ a^x71 is^ -\.
v n==no ^ J

Let As be the set of functions f on T satisfying the s-decay condition

(/(v, n))^) € Vs for every v e T

(recall (2.4),). Equivalently, in view of (1.5),

( E /(n)) (EP^ for every veT.
\^Drz{v) ^ n^\v\

With an argument similar to that used at the beginning of Remark 3.2 we
see that the condition is root-independent, because it can be equivalently
stated by restricting to \v\ large. Indeed, the condition for a given v follows
from that for its immediate descendants.

Correspondingly, let Bs be the set of R-compatible distributions (f) on
"H satisfying the s-decay condition

((̂ ,,))̂  € Vs for every veT.

Remark 3.6. — The one-parameter families As and Bs are increasing,
and I^T) C A^/q, since for / e ̂ (T) not identically zero we have

E fw n ^ 11/11^-i-
U^Dn{v)

Conversely, however, ^(T) does not contain As for any 5, as shown below
in Example 3.7. Yet, it does contain {/ e As : f is TV-radial for some N}
for every s < 1/q. Indeed, if / is TV-radial and 5-decaying, then

n/iii = E 1^)1 + E #^^) E IA^)I < oo,
\v\<N n=N \v\=N

since #Dn(v) is proportional to q71. D
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Example 3.7. — Let / be a function on T of constant modulus one
(thus / ^ ^(T)), and such that E^-==u /(^) = ° for all n e T (so / G A
for all s). (We can take /(v) to be a g-th root of unity for \v\ > 1, a (g+l)-st
root of unity for \v\ = 1, and 1 for v = e.) Although / ^ ^(T), we now
show that Rf is defined and is (induced by) a continuous R-compatible
function on 1~L.

If F is a union of families, then Y^^Q ̂  \u\=n f{u) = 0 because for
each n there are only finitely many families with elements of length n.
By Remark 1.2, for cu e ̂  the horocycle h^^n is the disjoint union of

' count ably many families if n < —1,
D-^(e) \ {c^i} and countably many families if n = —1,
{^n}? ^n+2(^n+i) \ {^+2} and countably many families if n > —1.

Thus, for every uj 6 f^ we have

( 0 i f n < - l ,
Rf{h^n)= -/(c^i) i f n = - l ,

/(^n) -/(^n+2) i f ^ > -1.

Since for all n the value Rf(h^^n) ls constant on f^^ for \v\ = n + 2, then
-R/ is a continuous function on "H. Furthermore ^^ -R/(^o/,n) = /(^) for
all uj € ^2, so that (R'l) holds for ^> = Rf. We see that Rf satisfies (R2) for
v = e, because from (2.2)

Rf(H^) = f Rf(h^n) d^) = [ /(e) if n ~ 05

JQ 10 if n ̂  0,

since J^ f(^k) d^{uj) vanishes for k ^ 0, because it is a sum of / over a
union of families. For v arbitrary we can either verify (R^) directly, or else
we can observe that, except for the vertices in the path from e to v and
their immediate descendants, families are the same with respect to e as
with respect to v. Thus / may be written as the sum of a function /i with
finite support (hence in L^T)), and a function /2 with vanishing sums
over all families with respect to the root v. Both Rf^ and Rf^ exist and
satisfy (R2) by Proposition 3.3 and by the case v = e. D

PROPOSITION 3.8. — Ifs< 1/^/q then R is defined on all of As-

Proof.— Let / € As-, u 6 T and n € Z. In the proof of Proposi-
tion 2.4 we observed that v ^ Sy, only for finitely many non-zero terms of
the series defining Rf(Hun) (CI- Definition 2.3), which we may disregard
for convergence purposes. By Lemma 2.5 the tail for m > rriQ = \n\ + 2 \u\
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of the remaining series is
c" E E w^-^^2

'̂:v°.n "e^")

=^1"1-»/2 ^ g-"^ ^ /(„)
m>mo veD^(n)

m—n even •- v /

(where Cn equals (9 - 1)/(9 + 1) if u = e and (q - l ) / q if u ̂  e), which
converges absolutely for / G As if 5 < 1/y/g. D

4. Functions of compact support.

NOTATION 4.1. — Label v\,... ,v^ all vertices ofT of a given length
N ^ 0. Ifv = v^ is one of them, partition the set { 1 , . . . , c^} as the disjoint
union for t = 0 , . . . , N of

J^ = [3 = ̂  • • • . CN : ̂ ^ C ^W} = {j : d(v^, Vs) is minimal at s = t}.

In particular J^ = {k}.

If (f) is a distribution on H, set

a\ = (f){H^ ^) for j == 1 , . . . , CN and n C Z.

If (f) is A/'-radial its values can be completely recovered from the
knowledge ofa^, using (2.1) and (2.5).

LEMMA 4.2.— Condition (Ra) (or (R^)) can be rewritten as

E^E<.2<-H=^E^E<2,-i.i
t=o jeJ^ t=o j^

(R-2') for all n e Z and v eT, and with N = \v\.

Proof. — For t = 0 , . . . , TV we have f2^ = [J ^ j . Observing
s=t,...,N VN

^J^

that
DN(vt) = {v^ : j e J^ t < ^ s ^ N}

and applying (2.1) and (1.5) we obtain

ct>(H^)=^ ^ ^
N s=t,...,N

J'e^
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The left-hand side of (R^) then equals q(q -+- 1) times
N Niy' ^ ^-n+^-N-^zy z a^^_^_2.

t=0 s=t,...,N f=l s=t,...,N
J<=^ j€^

A shift in the index t in the double sum on the right yields the left-hand
side of (R^'). The right-hand side is handled similarly. D

For TV, M non-negative integers let EN,M be the space of TV-radial
M-supported R-compatible functions on J~L. Clearly

(4.1) EN,M C EN^M' if N ^ N ' and M ^ M'.

LEMMA 4.3.— If N ^ M ^ 0, all N-radial M-supported R-
compatible functions on "H are in fact M-radial, i.e., EN,M = EM,M-

Proof. — It will suffice to prove that £'M+I,M c EM,M fo1' all M ^ 0.
The result will follow from (4.1) and the induction step

EN-^-I,M c -£'TV+I,M n EN^^N c EN-\-I,M n EN^N c EN,M-
If 0 is a 0-supported distribution on H and n -^ 0 then (/)(Hu,n) = 0

for every u C T. If 0 also satisfies (R'i), then (j)(Hu,o) is independent of
u G T, so that <^ is 0-radial. In particular £'1^0 c ^0,0-

Suppose M > 0 and (/) € EM+I,M- We need to show that a^ = a^
whenever ^M+I^M+I have the same parent. If v = v^^ for a given
k = l , . . . , C M + i 5 this amounts to showing that a^ = a^ for j in J^,
the set of indices of vertices different from v but having its same parent.
Since a^ vanishes for |m| > M, we need to prove this only for |m| ^ M.

To start a two-step induction, we prove the cases m = —M, —M + 1.
With N = M + 1, applying (R^) for n = -2M - 1.-2M, respectively,
gives

^ ^M = 9^-M.
jeJ?

Z^M-l =9 2a f cM+l t

j'eJS

Observe that J^ = {j : ^j D 0^^ =0} depends only on v~ (in fact
only on ^i). Thus so do a^^.a^^^.

Next let -M+l < m < M, and consider (R^) for n = -M-l+m. For
t < M, since J^ depends only on ̂ -, then so does every corresponding term
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on either side of the equality. On the left-hand side, the term t = M + 1
vanishes, because 2t - m > M. The same is true for t = M provided
m < M. On the right-hand side, the summands for t = M are a^_^ all of
which depend only on v~ by induction. Therefore, the unique summand of
the remaining term t = M + 1, namely a^, depends only on v~.

If m = M we have shown that the difference qa^ - ̂  .^j^ a^
depends only on v~ for every k. Assume the labeling is such that z^,. '., v^
share the same parent. Then for k ^ q and v = v^ we have JM =
{ 1 , . . . . k , . . . . q}. The difference qa^ - ^ a3^ is therefore independent

J=l,...,q
3^k

of A; = 1,.. . . q, and the resulting q - 1 equations clearly imply that a^ is
also independent of A;. Q

LEMMA 4.4. — IfM^O, in order for an R-compatible distribution 0
on H to be M-supported, it is sufficient that (f)(Hu,n) = 0 for every u eT
and n > M.

Proof. — Assume that (f){H^n) = 0 for every u e T and n > M.
We shall prove by induction on \v\ that (/){Hy^) = 0 whenever n < -M.
Replacing n by \v\ - n in (R^) we obtain

q(q+ l)<^e,n-2H) + ]^VW^n+2t-2H) - </>(^,n+2t-2|.|-2)] = 0
t=l

if n < —M.

If v = e this reduces to 0(^e,n) = 0, which starts the induction. If v / e
then, by the induction hypothesis, all summands vanish except possibly
those for which t = \v\, so that (/)(Hy^-2) = ̂ (^n) whenever n < -M.
Thus, for every positive integer p, we have </)(^,n-2p) = g2^^^), and
this must vanish in order for the series in (Ri) to converge. D

PROPOSITION 4.5. — For every N, M ̂  0, each N-radial M-supported
R-compatible function (f) on H is the Radon transform of an N-radial M-
supported function on T.

Proof. — Let (f) be an TV-radial M-supported R-compatible function
on H. We shall find an M-supported / such that Rf = (f). Then Rf^ =
(J)N = <^ and (f)N has the required properties. (Actually f^ = /, because R
is one-to-one on £i(T) by [CCP1, Theorem 3.1].)

By (4.1) and Lemma 4.3 we only need to prove the case N = M. We
shall show that EN^ is linearly generated by EN^-I and {R\v : \v\ = N}
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for all TV ^ 0 (set £b,-i = {0} to avoid exceptions). But EN,N-I =
EN-I,N-I by Lemma 4.3, proving the inductive step.

I f ^ C EN,N we shall see that (/) = ̂ -SI^N ̂ ^v.N^RXv ^ E N ^ N - I '
Indeed, by Remark 2.8 and Proposition 3.3, we have 0 € E ^ ^ ^ so
by Lemma 4.4 it suffices to show that a3^ vanishes for all j = 1,... ,c^.
Using Lemma 2.5, we see that R%^ (H^j ^) = ̂ j, the Kronecker symbol,
for all ^, j = 1,... . CN, and hence

a^ = ̂ ^) - ̂ {H^)6^ =0. D
^==1

THEOREM 4.6. — The Radon transform is one-to-one on the space
of functions of finite support, and its range is the space of R-compatible
distributions on 1~i of compact support. These distributions are actually
continuous functions. In fact, with respect to a root e, the image of the
set of M-supported functions on T is the set of continuous M-supported
R-compatible functions on 7i.

Proof. — The injectivity of R on finitely supported functions derives
from that on ^(T) [CCP1], or will follow from that on As in Theorem 5.5
below.

If / is an M-supported function on T, then Rf is a continuous M-
supported R-compatible function on 7^ by Proposition 2.9 and Proposi-
tion 3.3.

Conversely, if (f) is an M-supported R-compatible distribution on H,
then for N ^ 0 its TV-radialization (J)N is R-compatible by Lemma 3.4,
and is also M-supported. If N > M, then (J)N = ̂ M by Lemma 4.3, and,
by Remark 2.7, (f) = lim^v—.oo ^N = ̂ M ^ EM,Mi so by Proposition 4.5 it
is in the image of R. D
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5. Functions of non-compact support.

Remark 5.1.— The 5-decay conditions are compatible with N-
radializations in the following sense. A function / on T is 5-decaying if
and only if also f^ is for every TV. This holds since /^(v,n) = /(z^v,n)
whenever n ^ \v\ ^ N (for the "if" part, take N = v\ for a given v e T).
The same equivalence holds for distributions on H and follows from (2.5)
in a similar manner. D

Remark 5.2. — An TV-radial function / on T is 5-decaying if and only
if (/(^n))^o e vs for ^^Y ^ e ̂  since' ̂  ^-radiality, f{v,n) = f{ujn)
whenever n ^ \v\ ^ N and cj G f^-u (take v = UN to prove the "only
if" part). Similarly, an TV-radial function 0 on H is 5-decaying if and
only if ((/>(^,n))^^o e ps for ^^ (J e ^ because, by A^-radiality,
(f)(Hv^n) = 0(^,n) whenever 'y| ^ N and a; e ̂ . D

Denote by c the sequence (cn)n^o-

LEMMA 5.3. — Jfs< 1/^/q, the operator U on Vs given by U{d} = b,
where

bn = dn - {q - 1) ̂  an+2/c for every n ̂  0,
k>0

is a bijection of T>s onto itself, whose inverse is given by

an = bn + (q - 1) ̂  q^bn^k for every n ̂  0.
fc>0

Proof. — The space Pg can be decomposed as Vg2 x ^s2 ? splitting
each a eVs mto a pair (a6, a°), where a^ = a2n and a^ = a2n+i for every
n > 0. Correspondingly, U(a) = b splits as (^e, 6°) = (^(a6), V(a°)), where
V is the operator on Vg2 given by V(a) = b with

^n = an - (q - 1) ̂  a^ for every n ̂  0.
?n>n

We need to prove that V is a bijection of 2)52 onto itself, and its inverse is
given by

an = bn + (q - 1) ̂  q^'^bm for every n ̂  0.
m>n

Identify 2)52 with the space H{s~2) of analytic functions on {/z e C :
|^| < s~2} by a »-> f(z) = J^^o ctnZ71. We need to show that the function
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g corresponding to the sequence V(a) = b is in H(s-2). We have
00 °° 00 / .

9(z) = E ̂ n = E a,.- - (, - 1) ̂  ( ̂  ̂ )^
n=0 n=0 r^O^rr^n -/

00 m-1 oo
= W - (9-1) E a- E ̂ n = A^) - ̂ r2 E ̂ m -1)

m=l n=0 z im=l

= f^) - (q - i)^)-/(l) ̂  - g)/(^) + (9 - !)/(!)
^-1 z - 1 •

So ^ is defined wherever / is, including at z = 1, where g(l) = /(I) - (g -
l)/^!) (recall that s-2 > 1). Thus if / e J^-2) then ^ e ^(5-2). Since
^(^) = /(I), we can solve for f(z) and get

^,), (^-i)^)-(g-i)^) ^ ̂ ^ ̂  ̂  _ ^)-g(g)
z 9 2: — q

If <? € ff(s-2), since s-2 > g then f(q) == g(q) + (q - l)g'(q) is defined, thus
/ G H(s ). The expression for V~1 comes from the identities

f; a,." = /(,) = f^ ;,„," + lr2 ̂  ̂ (,n _ ̂
"=0 n=0 2 - 9 ̂ Q

00 oo ra-1

= E ̂ ^ + (^ -1) E6" E ^m9"-m-l
7^=0 n=l m=0
oo oo ,

= E^"+(9- i)E( E 9"1-"-1^).". D
"=0 n=0 S^n /

PROPOSITION 5.4. — For s < 1/^q the image of R on the set of
N-radial s-decaying functions on T is the set of N-radial s-decaying R-
compatible functions on T-i.

Proof.— Let / be an TV-radial s-decaying function on T. Then
<A = Rf is defined by Proposition 3.8, and TV-radial by Proposition 2.9.
For ^ G n, if n ̂  N we have h^ C S^, hence f(v) = f(^) for every
v € /i^». Thus, using Remark 1.2 and (1.5),

<^o,,n) = f^n) + E(^ - ̂ -l)/(^„+2fc) for n^N.
k>0

Therefore for n ^ N the sequence (<^(/^))^ equals U-^f^))
where £7 is the operator of Lemma 5.3. Hence, by Remark 5.2, <j> iss-
decaying. The Radon conditions for cf> can be verified by using absolute
convergence to rearrange the order of summation.
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Conversely, let (j) be an TV-radial s-decaying R-compatible function on
U, If v is a vertex with \v\ ̂  TV, then the sequence a^ = ((f)(Hy^)) > e
P^ hence &^ = Ua^ C ?„ by Lemma 5.3. Define a function /' on T'by

f'W = [
0 if \v\ < TV,
€] i fH^TV,

so /' is TV-radial and 5-decaying. By the above, Rf is defined and is TV-
radial, 5-decaying, R-compatible. By the preceding discussion, it coincides
with (j) on [h^^n : uj e ^, n ̂  N}. Since (j) - Rf is therefore also (N - 1)-
supported by Lemma 4.4, it equals Rg for some TV-radial (TV- l)-supported
function g on T, by Proposition 4.5. Then / = f ' ^ - g is TV-radial, 5-decaying,
and Rf = (f). D

THEOREM 5.5.— For s < I / ' ^ / q the Radon transform is one-to-one
on As and its range is Bg.

Proof, — Let / € As be such that Rf == 0. Applying the discussion
in the proof of Proposition 5.4 to fo, which is 0-radial and s-decaying
by Remark 5.1, we obtain

(/o(^n))^o = U{Rfo(h^^))^o = 0 for every uj e ̂ ,

because Rfo == (Rf)o = 0 by Proposition 2.9. Then f(e) = fo(e) = 0. Since
e is arbitrary, / is identically zero and so R is one-to-one.

Now let / € As be arbitrary. Thus Rf is defined by Proposition 3.8.
By Remark 5..1, f^ € As for all TV. By Proposition 2.9 and Proposition 5.4,
(Rf)N = RfN e Bs. Again by Remark 5.1, Rf e Bs.

Conversely, assume (f) e Bs. By Remark 5.1, <^v ^ Bs for every TV ^ 0,
so by Proposition 5.4 there exists an TV-radial function /^ e As such that
RfN = ̂ . We shall show that the function / on T given by f(v) = f^ (v)
for all v e T satisfies /^ = /N for all TV. Then f e As by Remark 5.1.
By Proposition 2.9, (Rf)N = RfN = ^N for every TV, whence Rf = (f)
by (2.5).

If TV' ^ TV, by Proposition 2.9 and (2.5) R{fN')N = W^^N =
((^N^N = (^N = Rf1^, which implies (fNf)N = f N , because R is one-to-
one. In particular, f^ = fN on {\v\ ^ N}, so /7v(v) = f(v) = f^^W if
H ^ N. If H ^ TV, instead, we have /Tv(^) = f(vN, \v\) = ̂ (VN, \v\) =
(f^N^) = fN(v) by the above. D

We conclude by showing that the use of distributions is necessary.
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Example 5.6. — Assume s < l / - ^ /q . Let A i , . . . , Xq be complex num-
bers of absolute value 1 and such that ^^i A^ = qs2^ and set A^+i = Ai.
Label the vertices of T by induction: those of length 1 are x\^... ,.Tg+i,
while the immediate descendants of v 7^ e are vx\^..., vxq. Thus any v can
be written as x^ ' ' • x ^ , , , with 1 ̂  Zi ^ q-\-1 and 1 ̂  ̂  • • - 5 ^\v\ ^ ^- Define
/(z;) = 5-H nSi^- We have

( E /(n)) =(5-n(^2)7l-H/M)^H^^ for every veT^
^Dn{v) /n^lvl

so / € ^ls, and Rf C 65 by Theorem 5.5.

We now show that the distribution Rf cannot be evaluated pointwise,
so it is not induced by a function on 7^. Let n ^ 0 and cj C f^.
By Remark 1.2, for every k ^ 0 the absolute value of the sum of / over the
vertices of length n -I- 2 A: in h^^n is greater than or equal to the absolute
value of the difference of

^ f{v) ^-"-^Y,
V^Dn+2k{^n+k)

^ f(v) ^-"-^sY-1,
V^Dn^k^n+k+l)

which is {(qs2)'1 — l)s~nqk. Thus the series defining Rf(h^,n) does not
converge. For n < 0 a similar argument yields the same conclusion. D
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