Plane curves with small linear orbits, I
Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 151-196.

The “linear orbit” of a plane curve of degree d is its orbit in d(d+3)/2 under the natural action of PGL (3). In this paper we compute the degree of the closure of the linear orbits of most curves with positive dimensional stabilizers. Our tool is a nonsingular variety dominating the orbit closure, which we construct by a blow-up sequence mirroring the sequence yielding an embedded resolution of the curve. The results given here will serve as an ingredient in the computation of the analogous information for arbitrary plane curves. Linear orbits of smooth plane curves were studied by the authors in J. of Alg. Geom., 2 (1993), 155-184.

L’“orbite linéaire” d’une courbe plane de degré d est son orbite dans d(d+3)/2 pour l’action naturelle de PGL (3). Dans cet article nous calculons le degré de l’adhérence de l’orbite linéaire pour la plupart des courbes dont le stabilisateur est de dimension positive. Nous utilisons une variété non singulière dominant l’adhérence de l’orbite, que nous construisons par une suite d’éclatements qui reflète la suite produisant une résolution plongée de la courbe. Les résultats obtenus ainsi seront utiles à la détermination de l’information analogue pour les courbes planes quelconques. Les orbites linéaires des courbes planes lisses ont été étudiées par les auteurs dans J. of Alg. Geom., 2 (1993), 155-184.

@article{AIF_2000__50_1_151_0,
     author = {Aluffi, Paoli and Faber, Carel},
     title = {Plane curves with small linear orbits, {I}},
     journal = {Annales de l'Institut Fourier},
     pages = {151--196},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {1},
     year = {2000},
     doi = {10.5802/aif.1750},
     zbl = {0953.14030},
     mrnumber = {2002d:14083},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1750/}
}
TY  - JOUR
AU  - Aluffi, Paoli
AU  - Faber, Carel
TI  - Plane curves with small linear orbits, I
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 151
EP  - 196
VL  - 50
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1750/
DO  - 10.5802/aif.1750
LA  - en
ID  - AIF_2000__50_1_151_0
ER  - 
%0 Journal Article
%A Aluffi, Paoli
%A Faber, Carel
%T Plane curves with small linear orbits, I
%J Annales de l'Institut Fourier
%D 2000
%P 151-196
%V 50
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1750/
%R 10.5802/aif.1750
%G en
%F AIF_2000__50_1_151_0
Aluffi, Paoli; Faber, Carel. Plane curves with small linear orbits, I. Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 151-196. doi : 10.5802/aif.1750. https://aif.centre-mersenne.org/articles/10.5802/aif.1750/

[Alu] P. Aluffi, The enumerative geometry of plane cubics I: smooth cubics, Trans. AMS, 317 (1990), 501-539. | MR | Zbl

[AF1] P. Aluffi, C. Faber, Linear orbits of smooth plane curves, J. Alg. Geom., 2 (1993), 155-184. | MR | Zbl

[AF2] P. Aluffi, C. Faber, Linear orbits of d-tuples of points in ℙ1, J. reine & angew. Math., 445 (1993), 205-220. | MR | Zbl

[AF3] P. Aluffi, C. Faber, A remark on the Chern class of a tensor product, Manu. Math., 88 (1995), 85-86. | MR | Zbl

[AF4] P. Aluffi, C. Faber, Plane curves with small linear orbits II, Preprint, math.AG/9906131.

[Ful] W. Fulton, Intersection Theory, Springer Verlag, 1984. | MR | Zbl

[Ghi] A. Ghizzetti, Sulle curve limiti di un sistema continuo ∞1 di curve piane omografiche, Memorie R. Accad. Sci. Torino (2), 68 (1937), 124-141. | JFM | Zbl

[MX] J.M. Miret, S. Xambó, Geometry of Complete Cuspidal Cubics, in Algebraic curves and projective geometry (Trento, 1988), Springer Lecture Notes in Math. 1389, 195-234. | Zbl

Cited by Sources: