Here we show that a Kupka component of a codimension 1 singular foliation of is a complete intersection. The result implies the existence of a meromorphic first integral of . The result was previously known if was assumed to be not a square.
On considère ici les feuilletages holomorphes singuliers de codimension 1 dans avec une composante de Kupka compacte . On démontre que est une intersection complète.
@article{AIF_1999__49_4_1423_0,
author = {Ballico, Edoardo},
title = {A splitting theorem for the {Kupka} component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. {Addendum} to an addendum to a paper by {Calvo-Andrade} and {Soares}},
journal = {Annales de l'Institut Fourier},
pages = {1423--1425},
year = {1999},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {49},
number = {4},
doi = {10.5802/aif.1723},
zbl = {0959.32037},
mrnumber = {2001b:32059},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1723/}
}
TY - JOUR
AU - Ballico, Edoardo
TI - A splitting theorem for the Kupka component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares
JO - Annales de l'Institut Fourier
PY - 1999
SP - 1423
EP - 1425
VL - 49
IS - 4
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1723/
DO - 10.5802/aif.1723
LA - en
ID - AIF_1999__49_4_1423_0
ER -
%0 Journal Article
%A Ballico, Edoardo
%T A splitting theorem for the Kupka component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares
%J Annales de l'Institut Fourier
%D 1999
%P 1423-1425
%V 49
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1723/
%R 10.5802/aif.1723
%G en
%F AIF_1999__49_4_1423_0
Ballico, Edoardo. A splitting theorem for the Kupka component of a foliation of ${\mathbb {C}}{\mathbb {P}}^n,\;n\ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares. Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1423-1425. doi: 10.5802/aif.1723
[B] , A splitting theorem for the Kupka component of a foliation of ℂℙn, n ≥ 6. Addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier, 45-4 (1995), 1119-1121. | Zbl | Numdam
[CS] , , Chern numbers of a Kupka component, Ann. Inst. Fourier, 44-4 (1994), 1219-1236. | Zbl | MR | Numdam
[CL] , , Codimension one foliations in ℂℙn n ≥ 3, with Kupka components, in Complex analytic methods in dinamical systems, Astérisque, (1994), 93-133. | Zbl
[F] , Ein Kriterium für vollständige Durchsnitte, Invent. Math., 62 (1981), 393-401. | Zbl | MR
[FL] , , Connectivity in algebraic geometry, in Algebraic Geometry, Proceedings Chicago 1980, Lect. Notes in Math. 862, Springer-Verlag (1981), 26-92. | Zbl | MR
[GN] , , A structural stability of foliations with a meromorphic firs integral, Topology, 30 (1990), 315-334. | Zbl | MR
[GH] , , Principles of Algebraic Geometry, John Wiley & Sons, 1978. | Zbl
[OSS] , , , Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhäuser, Basel, 1978.
Cité par Sources :



