A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.
Une fonction numérique des cartes planaires bicubiques trouvée par l’auteur et des collègues est un cas spécial d’un polynôme de François Jaeger.
@article{AIF_1999__49_3_1095_0, author = {Tutte, William T.}, title = {Bicubic planar maps}, journal = {Annales de l'Institut Fourier}, pages = {1095--1102}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {3}, year = {1999}, doi = {10.5802/aif.1708}, zbl = {0923.05019}, mrnumber = {2001d:05160}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1708/} }
TY - JOUR AU - Tutte, William T. TI - Bicubic planar maps JO - Annales de l'Institut Fourier PY - 1999 SP - 1095 EP - 1102 VL - 49 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1708/ DO - 10.5802/aif.1708 LA - en ID - AIF_1999__49_3_1095_0 ER -
Tutte, William T. Bicubic planar maps. Annales de l'Institut Fourier, Volume 49 (1999) no. 3, pp. 1095-1102. doi : 10.5802/aif.1708. https://aif.centre-mersenne.org/articles/10.5802/aif.1708/
[1] The dissection of rectangles into squares, Duke Math. J., 7 (1940), 312-340. | JFM | MR | Zbl
, , and ,[2] Leaky electricity and triangulated triangles, Philips Research Reports, 30 (1975), 205-219.
, , and ,[3] A new invariant of plane bipartite cubic graphs, Discrete Maths., 101 (1992), 149-164. | MR | Zbl
,[4] The four colour Theorem, J. Comb. Theory B, 70 (1997), 2-44. | MR | Zbl
, , and ,[5] Note on a theorem in geometry of position, Trans. Royal Soc. Edinburgh, 29 (1880), 657-660. | JFM
,[6] On Hamiltonian Circuits, J. London Math. Soc., 21 (1946), 98-101. | MR | Zbl
,[7] The dissection of equilateral triangles into equilateral triangles, Proc. Cambbridge Phil. Soc., 44 (1948), 463-482. | MR | Zbl
,[8] On chromatic polynomials and the golden ratio, J. Comb. Theory, 9 (1970), 289-296. | MR | Zbl
,[9] Graph theory as I have known it, Chapter 4, Oxford University Press, 1998. | Zbl
,Cited by Sources: