Soit un espace symétrique réel et la décomposition correspondante de l’algèbre de Lie. À tout domaine ouvert et -invariant formé d’éléments réels ad-diagonalisables, on associe une variété complexe qui est une généralisation non-linéaire d’un domaine tube à base et nous avons une action naturelle de par des applications holomorphes. On montre que est une variété de Stein si et seulement si est convexe, que l’enveloppe d’holomorphie est schlicht et que les fonctions -invariantes plurisousharmoniques correspondent aux fonctions -invariantes convexes sur . Finalement on applique ces résultats pour démontrer l’existence d’une décomposition intégrale pour les espaces de Hilbert -invariants de fonctions holomorphes sur .
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant functions on . Finally we apply these results to obtain an integral decomposition for -invariant Hilbert spaces of holomorphic functions on .
@article{AIF_1999__49_1_177_0, author = {Neeb, Karl-Hermann}, title = {On the complex geometry of invariant domains in complexified symmetric spaces}, journal = {Annales de l'Institut Fourier}, pages = {177--225}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {1}, year = {1999}, doi = {10.5802/aif.1671}, zbl = {0921.22003}, mrnumber = {2000i:32040}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1671/} }
TY - JOUR AU - Neeb, Karl-Hermann TI - On the complex geometry of invariant domains in complexified symmetric spaces JO - Annales de l'Institut Fourier PY - 1999 SP - 177 EP - 225 VL - 49 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1671/ DO - 10.5802/aif.1671 LA - en ID - AIF_1999__49_1_177_0 ER -
%0 Journal Article %A Neeb, Karl-Hermann %T On the complex geometry of invariant domains in complexified symmetric spaces %J Annales de l'Institut Fourier %D 1999 %P 177-225 %V 49 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1671/ %R 10.5802/aif.1671 %G en %F AIF_1999__49_1_177_0
Neeb, Karl-Hermann. On the complex geometry of invariant domains in complexified symmetric spaces. Annales de l'Institut Fourier, Tome 49 (1999) no. 1, pp. 177-225. doi : 10.5802/aif.1671. https://aif.centre-mersenne.org/articles/10.5802/aif.1671/
[AL92] Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math., N.S., 3(4) (1992), 365-375. | MR | Zbl
, and ,[DN93] On wedges in Lie triple systems and ordered symmetric spaces, Geometriae Ded., 46 (1993), 1-34. | MR | Zbl
, and ,[Hel84] Groups and geometric analysis, Acad. Press, London, 1984.
,[HÓ96] Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. | Zbl
, ,[Hö73] An introduction to complex analysis in several variables, North-Holland, 1973. | Zbl
,[Kr97] The Plancherel Theorem for Biinvariant Hilbert Spaces, Publ. R.I.M.S., to appear. | Zbl
,[KN96] On hyperbolic cones and mixed symmetric spaces, Journal of Lie Theory, 6:1 (1996), 69-146. | MR | Zbl
and ,[KNÓ97] Spherical Representations and Mixed Symmetric Spaces, Journal of Representation Theory, 1 (1997), 424-461. | MR | Zbl
, and ,[Las78] Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Sci. Ec. Norm. Sup., 4e série, 11 (1978), 167-210. | Numdam | Zbl
,[Lo69] Symmetric Spaces I: General Theory, Benjamin, New York, Amsterdam, 1969. | MR | Zbl
,[MaMo60] Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. | Numdam | MR | Zbl
, and ,[Ne96a] Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum, 53 (1996), 230-261. | MR | Zbl
,[Ne96b] On some classes of multiplicity free representations, Manuscripta Math., 92 (1997), 389-407. | MR | Zbl
,[Ne97] Representation theory and convexity, submitted. | Zbl
,[Ne98] On the complex and convex geometry of Ol'shanskiĠ semigroups, Annales de l'Institut Fourier, 48-1 (1998), 149-203. | Numdam | MR | Zbl
,[Ne99] Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, 1999, to appear. | Zbl
,Cité par Sources :