Soit
Let
@article{AIF_1998__48_4_1189_0, author = {Borthwick, David and Paul, Thierry and Uribe, Alejandro}, title = {Semiclassical spectral estimates for {Toeplitz} operators}, journal = {Annales de l'Institut Fourier}, pages = {1189--1229}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {4}, year = {1998}, doi = {10.5802/aif.1654}, zbl = {0920.58059}, mrnumber = {2000c:58048}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1654/} }
TY - JOUR AU - Borthwick, David AU - Paul, Thierry AU - Uribe, Alejandro TI - Semiclassical spectral estimates for Toeplitz operators JO - Annales de l'Institut Fourier PY - 1998 SP - 1189 EP - 1229 VL - 48 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1654/ DO - 10.5802/aif.1654 LA - en ID - AIF_1998__48_4_1189_0 ER -
%0 Journal Article %A Borthwick, David %A Paul, Thierry %A Uribe, Alejandro %T Semiclassical spectral estimates for Toeplitz operators %J Annales de l'Institut Fourier %D 1998 %P 1189-1229 %V 48 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1654/ %R 10.5802/aif.1654 %G en %F AIF_1998__48_4_1189_0
Borthwick, David; Paul, Thierry; Uribe, Alejandro. Semiclassical spectral estimates for Toeplitz operators. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1189-1229. doi : 10.5802/aif.1654. https://aif.centre-mersenne.org/articles/10.5802/aif.1654/
[1] Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.
,[2] General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.
,[3] The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. | MR | Zbl
and ,[4] Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. | MR | Zbl
, , and ,[5] Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. | Zbl
, , and ,[6] On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. | MR | Zbl
,[7] Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. | MR | Zbl
,[8] The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). | MR | Zbl
and ,[9] Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. | Numdam | Zbl
and ,[10] Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). | Zbl
, , and ,[11] Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.
, and ,[12] Enveloping Algebras, North-Holland, 1977.
,[13] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. | MR | Zbl
and ,[14] Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. | MR | Zbl
,[15] Quantum intrinsically degenerate and classical secular perturbation theory, preprint.
and ,[16] Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. | MR | Zbl
,[17] Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. | MR | Zbl
and ,[18] Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. | MR | Zbl
and ,[19] Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291.
and ,[20] The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. | Zbl
,[21] The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. | MR | Zbl
and ,[22] On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. | MR | Zbl
and ,[23] Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. | MR | Zbl
and ,[24] Autour de l'approximation semi-classique, Birkhauser 1987. | MR | Zbl
,[25] Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. | MR | Zbl
and ,[26] Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.
,- Hypoelliptic operators in geometry. Abstracts from the workshop held May 21–26, 2023, Oberwolfach Rep. 20, No. 2, 1323-1396, 2023 | DOI:10.4171/owr/2023/24 | Zbl:1528.32001
- Symplectic invariants of semitoric systems and the inverse problem for quantum systems, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 1, pp. 246-274 | DOI:10.1016/j.indag.2020.04.005 | Zbl:1469.37046
- Geometric quantization of Hamiltonian flows and the Gutzwiller trace formula, Letters in Mathematical Physics, Volume 110 (2020) no. 7, pp. 1585-1621 | DOI:10.1007/s11005-020-01267-z | Zbl:1511.53085
- Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, pp. 911-943 | DOI:10.1007/s00209-020-02462-3 | Zbl:1499.58023
- Pointwise Weyl Law for Partial Bergman Kernels, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 589 | DOI:10.1007/978-3-030-01588-6_13
- Symplectic rigidity and quantum mechanics, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 155-179 | DOI:10.4171/176-1/6 | Zbl:1409.53072
- Local scaling asymptotics for the Gutzwiller trace formula in Berezin-Toeplitz quantization, The Journal of Geometric Analysis, Volume 28 (2018) no. 2, pp. 1548-1596 | DOI:10.1007/s12220-017-9878-0 | Zbl:1398.32023
- A Gutzwiller trace formula for large Hermitian matrices, Reviews in Mathematical Physics, Volume 29 (2017) no. 8, p. 41 (Id/No 1750027) | DOI:10.1142/s0129055x17500271 | Zbl:1375.81104
- Scaling asymptotics of Szegö kernels under commuting Hamiltonian actions, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 195 (2016) no. 6, pp. 2027-2059 | DOI:10.1007/s10231-016-0552-0 | Zbl:1356.53079
- Subprincipal symbol for Toeplitz operators, Letters in Mathematical Physics, Volume 106 (2016) no. 12, pp. 1673-1694 | DOI:10.1007/s11005-016-0826-x | Zbl:1378.53103
- Inverse spectral theory for semiclassical Jaynes-Cummings systems, Mathematische Annalen, Volume 364 (2016) no. 3-4, pp. 1393-1413 | DOI:10.1007/s00208-015-1259-z | Zbl:1338.53107
- Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case, Analysis PDE, Volume 7 (2014) no. 7, p. 1595 | DOI:10.2140/apde.2014.7.1595
- Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators: elliptic case, Communications in Partial Differential Equations, Volume 39 (2014) no. 2, pp. 213-243 | DOI:10.1080/03605302.2013.845045 | Zbl:1305.58017
- Semi-classical properties of Berezin-Toeplitz operators with
ck-symbol, Journal of Mathematical Physics, Volume 55 (2014) no. 4, p. 042108 | DOI:10.1063/1.4870869 | Zbl:1296.81039 - Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results, Advances in Mathematical Physics, Volume 2010 (2010), p. 38 (Id/No 927280) | DOI:10.1155/2010/927280 | Zbl:1207.81049
- Local Asymptotics for Slowly Shrinking Spectral Bands of a Berezin-Toeplitz Operator, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq109
- The semiclassical structure of low-energy states in the presence of a magnetic field, Transactions of the American Mathematical Society, Volume 359 (2007) no. 4, pp. 1875-1888 | DOI:10.1090/s0002-9947-06-04197-3 | Zbl:1210.35033
- Reduced Gutzwiller formula with symmetry: case of a Lie group, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 85 (2006) no. 6, pp. 719-742 | DOI:10.1016/j.matpur.2005.11.003 | Zbl:1121.81088
- Toeplitz operators and Hamiltonian torus actions, Journal of Functional Analysis, Volume 236 (2006) no. 1, pp. 299-350 | DOI:10.1016/j.jfa.2005.10.011 | Zbl:1099.53059
- Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Communications in Partial Differential Equations, Volume 28 (2003) no. 9-10, pp. 1527-1566 | DOI:10.1081/pde-120024521 | Zbl:1038.53086
- Dispersionless Toda and Toeplitz operators, Duke Mathematical Journal, Volume 117 (2003) no. 1, pp. 157-196 | DOI:10.1215/s0012-7094-03-11713-5 | Zbl:1024.37047
- Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, Conférence Moshé Flato 1999 (2000), p. 289 | DOI:10.1007/978-94-015-1276-3_22
Cité par 22 documents. Sources : Crossref, zbMATH