Semiclassical spectral estimates for Toeplitz operators
Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1189-1229.

Soit X une variété kählérienne compacte de classe de Kähler entière et LX un fibré en droites hermitien holomorphe, dont la courbure est la forme symplectique sur X. Soit HC(X,) un hamiltonien et Tk l’opérateur de Toeplitz de multiplicateur H agissant sur l’espace k=H0(X,Lk). On obtient des estimations sur les valeurs et fonctions propres de Tk lorsque k en termes du flot hamiltonien associé a H. On étudie en détail le cas où X est une orbite coadjointe entière d’un groupe de Lie.

Let X be a compact Kähler manifold with integral Kähler class and LX a holomorphic Hermitian line bundle whose curvature is the symplectic form of X. Let HC(X,) be a Hamiltonian, and let Tk be the Toeplitz operator with multiplier H acting on the space k=H0(X,Lk). We obtain estimates on the eigenvalues and eigensections of Tk as k, in terms of the classical Hamilton flow of H. We study in some detail the case when X is an integral coadjoint orbit of a Lie group.

@article{AIF_1998__48_4_1189_0,
     author = {Borthwick, David and Paul, Thierry and Uribe, Alejandro},
     title = {Semiclassical spectral estimates for {Toeplitz} operators},
     journal = {Annales de l'Institut Fourier},
     pages = {1189--1229},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {4},
     year = {1998},
     doi = {10.5802/aif.1654},
     zbl = {0920.58059},
     mrnumber = {2000c:58048},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1654/}
}
TY  - JOUR
AU  - Borthwick, David
AU  - Paul, Thierry
AU  - Uribe, Alejandro
TI  - Semiclassical spectral estimates for Toeplitz operators
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 1189
EP  - 1229
VL  - 48
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1654/
DO  - 10.5802/aif.1654
LA  - en
ID  - AIF_1998__48_4_1189_0
ER  - 
%0 Journal Article
%A Borthwick, David
%A Paul, Thierry
%A Uribe, Alejandro
%T Semiclassical spectral estimates for Toeplitz operators
%J Annales de l'Institut Fourier
%D 1998
%P 1189-1229
%V 48
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1654/
%R 10.5802/aif.1654
%G en
%F AIF_1998__48_4_1189_0
Borthwick, David; Paul, Thierry; Uribe, Alejandro. Semiclassical spectral estimates for Toeplitz operators. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1189-1229. doi : 10.5802/aif.1654. https://aif.centre-mersenne.org/articles/10.5802/aif.1654/

[1] V.I. Arnol'D, Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.

[2] F. A. Berezin, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.

[3] N. L. Balazs and A. Voros, The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. | MR | Zbl

[4] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. | MR | Zbl

[5] D. Borthwick, T. Paul, and A. Uribe, Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. | Zbl

[6] L. Boutet De Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. | MR | Zbl

[7] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. | MR | Zbl

[8] L. Boutet De Monvel and V. Guillemin, The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). | MR | Zbl

[9] L. Boutet De Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. | Numdam | Zbl

[10] M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). | Zbl

[11] M. Degli Esposti, S. Graffi and S. Isola, Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.

[12] J. Dixmier, Enveloping Algebras, North-Holland, 1977.

[13] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. | MR | Zbl

[14] G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. | MR | Zbl

[15] S. Graffi and T. Paul, Quantum intrinsically degenerate and classical secular perturbation theory, preprint.

[16] V. Guillemin, Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. | MR | Zbl

[17] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. | MR | Zbl

[18] V. Guillemin and A. Uribe, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. | MR | Zbl

[19] J.H. Hannay and M.V. Berry, Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291.

[20] L. Hörmander, The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. | Zbl

[21] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. | MR | Zbl

[22] T. Paul and A. Uribe, On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. | MR | Zbl

[23] T. Paul and A. Uribe, Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. | MR | Zbl

[24] D. Robert, Autour de l'approximation semi-classique, Birkhauser 1987. | MR | Zbl

[25] M. Taylor and A. Uribe, Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. | MR | Zbl

[26] L. Yaffe, Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.

  • Barilari, Davide; Ma, Xiaonan; Savale, Nikhil; Wang, Yi Hypoelliptic operators in geometry. Abstracts from the workshop held May 21–26, 2023, Oberwolfach Rep. 20, No. 2, 1323-1396, 2023 | DOI:10.4171/owr/2023/24 | Zbl:1528.32001
  • Pelayo, Álvaro Symplectic invariants of semitoric systems and the inverse problem for quantum systems, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 1, pp. 246-274 | DOI:10.1016/j.indag.2020.04.005 | Zbl:1469.37046
  • Ioos, Louis Geometric quantization of Hamiltonian flows and the Gutzwiller trace formula, Letters in Mathematical Physics, Volume 110 (2020) no. 7, pp. 1585-1621 | DOI:10.1007/s11005-020-01267-z | Zbl:1511.53085
  • Kordyukov, Yuri A. Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, pp. 911-943 | DOI:10.1007/s00209-020-02462-3 | Zbl:1499.58023
  • Zelditch, Steve; Zhou, Peng Pointwise Weyl Law for Partial Bergman Kernels, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 589 | DOI:10.1007/978-3-030-01588-6_13
  • Polterovich, Leonid Symplectic rigidity and quantum mechanics, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 155-179 | DOI:10.4171/176-1/6 | Zbl:1409.53072
  • Paoletti, Roberto Local scaling asymptotics for the Gutzwiller trace formula in Berezin-Toeplitz quantization, The Journal of Geometric Analysis, Volume 28 (2018) no. 2, pp. 1548-1596 | DOI:10.1007/s12220-017-9878-0 | Zbl:1398.32023
  • Bolte, Jens; Egger, Sebastian; Keppeler, Stefan A Gutzwiller trace formula for large Hermitian matrices, Reviews in Mathematical Physics, Volume 29 (2017) no. 8, p. 41 (Id/No 1750027) | DOI:10.1142/s0129055x17500271 | Zbl:1375.81104
  • Camosso, Simone Scaling asymptotics of Szegö kernels under commuting Hamiltonian actions, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 195 (2016) no. 6, pp. 2027-2059 | DOI:10.1007/s10231-016-0552-0 | Zbl:1356.53079
  • Charles, Laurent Subprincipal symbol for Toeplitz operators, Letters in Mathematical Physics, Volume 106 (2016) no. 12, pp. 1673-1694 | DOI:10.1007/s11005-016-0826-x | Zbl:1378.53103
  • Le Floch, Yohann; Pelayo, Álvaro; Vũ Ngọc, San Inverse spectral theory for semiclassical Jaynes-Cummings systems, Mathematische Annalen, Volume 364 (2016) no. 3-4, pp. 1393-1413 | DOI:10.1007/s00208-015-1259-z | Zbl:1338.53107
  • Le Floch, Yohann Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case, Analysis PDE, Volume 7 (2014) no. 7, p. 1595 | DOI:10.2140/apde.2014.7.1595
  • Le Floch, Yohann Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators: elliptic case, Communications in Partial Differential Equations, Volume 39 (2014) no. 2, pp. 213-243 | DOI:10.1080/03605302.2013.845045 | Zbl:1305.58017
  • Barron, Tatyana; Ma, Xiaonan; Marinescu, George; Pinsonnault, Martin Semi-classical properties of Berezin-Toeplitz operators with Ckck-symbol, Journal of Mathematical Physics, Volume 55 (2014) no. 4, p. 042108 | DOI:10.1063/1.4870869 | Zbl:1296.81039
  • Schlichenmaier, Martin Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results, Advances in Mathematical Physics, Volume 2010 (2010), p. 38 (Id/No 927280) | DOI:10.1155/2010/927280 | Zbl:1207.81049
  • Paoletti, R. Local Asymptotics for Slowly Shrinking Spectral Bands of a Berezin-Toeplitz Operator, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq109
  • Borthwick, David; Uribe, Alejandro The semiclassical structure of low-energy states in the presence of a magnetic field, Transactions of the American Mathematical Society, Volume 359 (2007) no. 4, pp. 1875-1888 | DOI:10.1090/s0002-9947-06-04197-3 | Zbl:1210.35033
  • Cassanas, Roch Reduced Gutzwiller formula with symmetry: case of a Lie group, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 85 (2006) no. 6, pp. 719-742 | DOI:10.1016/j.matpur.2005.11.003 | Zbl:1121.81088
  • Charles, L. Toeplitz operators and Hamiltonian torus actions, Journal of Functional Analysis, Volume 236 (2006) no. 1, pp. 299-350 | DOI:10.1016/j.jfa.2005.10.011 | Zbl:1099.53059
  • Charles, L. Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Communications in Partial Differential Equations, Volume 28 (2003) no. 9-10, pp. 1527-1566 | DOI:10.1081/pde-120024521 | Zbl:1038.53086
  • Bloch, A.; Golse, F.; Paul, T.; Uribe, A. Dispersionless Toda and Toeplitz operators, Duke Mathematical Journal, Volume 117 (2003) no. 1, pp. 157-196 | DOI:10.1215/s0012-7094-03-11713-5 | Zbl:1024.37047
  • Schlichenmaier, Martin Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, Conférence Moshé Flato 1999 (2000), p. 289 | DOI:10.1007/978-94-015-1276-3_22

Cité par 22 documents. Sources : Crossref, zbMATH