On obtient des estimations pour des opérateurs maximaux associés à des hypersurfaces de qui sont des graphes de fonctions homogènes. On en déduit un théorème de régularité pour les solutions d’une certaine équation aux dérivées partielles linéaire.
Sharp estimates are obtained for averaging operators associated to hypersurfaces in given as graphs of homogeneous functions. An application to the regularity of an initial value problem is given.
@article{AIF_1996__46_5_1359_0, author = {Iosevich, Alex and Sawyer, Eric}, title = {Sharp $L^p-L^q$ estimates for a class of averaging operators}, journal = {Annales de l'Institut Fourier}, pages = {1359--1384}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {5}, year = {1996}, doi = {10.5802/aif.1553}, zbl = {0898.42003}, mrnumber = {98a:42008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1553/} }
TY - JOUR AU - Iosevich, Alex AU - Sawyer, Eric TI - Sharp $L^p-L^q$ estimates for a class of averaging operators JO - Annales de l'Institut Fourier PY - 1996 SP - 1359 EP - 1384 VL - 46 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1553/ DO - 10.5802/aif.1553 LA - en ID - AIF_1996__46_5_1359_0 ER -
%0 Journal Article %A Iosevich, Alex %A Sawyer, Eric %T Sharp $L^p-L^q$ estimates for a class of averaging operators %J Annales de l'Institut Fourier %D 1996 %P 1359-1384 %V 46 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1553/ %R 10.5802/aif.1553 %G en %F AIF_1996__46_5_1359_0
Iosevich, Alex; Sawyer, Eric. Sharp $L^p-L^q$ estimates for a class of averaging operators. Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1359-1384. doi : 10.5802/aif.1553. https://aif.centre-mersenne.org/articles/10.5802/aif.1553/
[Io1] Maximal operators associated to families of flat curves in the plane, Duke Math. J., 76 (1994), 633-644. | MR | Zbl
,[Io2] Averages over homogeneous hypersurfaces in R3, to appear in Forum Mathematicum, January (1996). | MR | Zbl
,[IoSa] Oscillatory integrals and maximal averages over homogeneous surfaces, Duke Math. J., 82 (1996), 1-39. | MR | Zbl
and ,[KPV] Oscillatory integrals and regularity of dispersive equations, Indiana Math. J., 40 (1991), 33-69. | MR | Zbl
, , and ,[Litt] Lp — Lq estimates for singular integral operators, Proc. Symp. Pure Math., 23 (1973), 479-481. | MR | Zbl
,[RiSt] Harmonic analysis on nilpotent groups and singular integrals III, Jour. Funct. Anal., 86 (1989), 360-389. | MR | Zbl
and ,[So] Fourier integrals in classical analysis, Cambridge Univ. Press, 1993. | MR | Zbl
,[St1] Lp boundedness of certain convolution operators, Bull. Amer. Math. Soc., 77 (1971), 404-405. | MR | Zbl
,[St2] Harmonic Analysis, Princeton University Press, 1993. | Zbl
,[Str] Convolutions with kernels having singularities on the sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471. | MR | Zbl
,Cité par Sources :