We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.
On considère le problème de l’approximation qualitative par des solutions d’une équation elliptique, homogène, à coefficients constants, dans les normes de Lipschitz et BMO. Notre méthode est bien connue : on trouve une condition suffisante pour l’approximation en se réduisant à un problème de synthèse spectrale dans un certain espace de Lizorkin-Triebel doté de sa topologie faible . Deux exemples, dont l’origine est dans une construction de Hedberg, montrent que nos conditions sont fines.
@article{AIF_1996__46_4_1057_0,
author = {Mateu, Joan and Netrusov, Yuri and Orobitg, Joan and Verdera, Joan},
title = {BMO and {Lipschitz} approximation by solutions of elliptic equations},
journal = {Annales de l'Institut Fourier},
pages = {1057--1081},
year = {1996},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {46},
number = {4},
doi = {10.5802/aif.1540},
zbl = {0853.31007},
mrnumber = {98c:41029},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1540/}
}
TY - JOUR AU - Mateu, Joan AU - Netrusov, Yuri AU - Orobitg, Joan AU - Verdera, Joan TI - BMO and Lipschitz approximation by solutions of elliptic equations JO - Annales de l'Institut Fourier PY - 1996 SP - 1057 EP - 1081 VL - 46 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1540/ DO - 10.5802/aif.1540 LA - en ID - AIF_1996__46_4_1057_0 ER -
%0 Journal Article %A Mateu, Joan %A Netrusov, Yuri %A Orobitg, Joan %A Verdera, Joan %T BMO and Lipschitz approximation by solutions of elliptic equations %J Annales de l'Institut Fourier %D 1996 %P 1057-1081 %V 46 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1540/ %R 10.5802/aif.1540 %G en %F AIF_1996__46_4_1057_0
Mateu, Joan; Netrusov, Yuri; Orobitg, Joan; Verdera, Joan. BMO and Lipschitz approximation by solutions of elliptic equations. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1057-1081. doi: 10.5802/aif.1540
[A] , A note on the Choquet integrals with respect to Hausdorff capacity, Lecture Notes in Math., 1302 (1988), 115-124. | Zbl | MR
[AH] and , Function spaces and Potential Theory, Springer, Berlin and Heidelberg, 1996. | Zbl | MR
[B] , Approximation in the mean by solutions of elliptic equations, Trans. Amer. Math. Soc., 281 (1984), 761-784. | Zbl | MR
[CA] , Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Sup. Pisa, 18 (1964), 137-160. | Zbl | MR | Numdam
[C] , Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, Van Nostrand, Princeton, N. J., 1967. | Zbl | MR
[FJ] and , A discrete transform and decompositions of distribution spaces, J. Func. Anal., 93 (1990), 34-170. | Zbl | MR
[GR] and , Weighted norm inequalities and related topics, North-Holland Mathematical Studies, 116, Amsterdam, 1985. | Zbl | MR
[GT] and , Degenerate cases of approximation by solutions of systems with injective symbols, Canad. J. Math., 20 (1993), 1-18. | Zbl
[H] , Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. | Zbl | MR
[Ho] , Extension theorems for functions of vanishing mean oscillation, Pacific J. of Math., 142 (1990), 277-295. | Zbl | MR
[JW] and , Function spaces on subsets of Rn, Harwood Academic Publishers, Math. Reports, 2, Part 1, 1984. | Zbl | MR
[M] , A counterexample in Lp approximation by harmonic functions, preprint, 1995. | Zbl
[MO] and , Lipschitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J., 39 (1990), 703-736. | Zbl | MR
[MV] and , BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces, Rev. Mat. Iberoamericana, 4 (1988), 291-318. | Zbl | MR
[MP] , Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge, 1995. | Zbl | MR
[MPO] and , On some properties of Hausdorff content related to instability, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 393-398. | Zbl | MR
[ME] , Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15 (1964), 717-721. | Zbl | MR
[N1] , Spectral synthesis in spaces of smooth functions, Russian Acad. Sci. Dokl. Math., 46, 1993), 135-138. | Zbl | MR
[N2] , Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Proc. Steklov Inst. Math., 187 (1990), 185-203. | Zbl
[N3] , Imbedding theorems for Lizorkin-Triebel spaces, Zapiski Nauchn. Sem. LOMI, 159 (1987), 103-112, English trans.: J. Soviet Math., 47 (1989). | Zbl
[N4] , Metric estimates of capacities of sets in the Besov spaces, Trudy Mian USSR, 190 (1989), 159-185, English trans.: Proc. Steklov Ins. Math., 190 (1992), 167-192. | Zbl | MR
[OF1] , Rational approximation in Lipschitz norms II, Proc. R. Ir. Acad., 75 A (1975), 317-330. | Zbl | MR
[OF2] , Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc., 288 (1977), 187-206. | Zbl | MR
[OF3] , Localness of certain Banach modules, Indiana Univ. Math. J., 24 (1975), 1135-1141. | Zbl | MR
[St] , Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | Zbl | MR
[TA] , Approximation on compact sets by solutions of systems with surjective symbol, Russian Math. Surveys, 48-5 (1994), 103-145. | Zbl | MR
[T] , Theory of function spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. | Zbl
[V1] , Cm approximation by solutions of elliptic equations, and Calderón Zygmund operators, Duke Math. J., 55 (1987), 157-187. | Zbl | MR
[V2] , Removability, capacity and approximation, Complex Potential Theory, NATO ASI Series C, 439, Kluwer Academic Publishers, Dordrecht (1993), 419-473. | Zbl | MR
[V3] , BMO rational approximation and one dimensional Hausdorff content, Trans. Amer. Math. Soc., 297 (1986), 283-304. | Zbl | MR
[W] , Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc., 41 (1973), 267-290. | Zbl | MR
Cité par Sources :



