On considère le problème de l’approximation qualitative par des solutions d’une équation elliptique, homogène, à coefficients constants, dans les normes de Lipschitz et BMO. Notre méthode est bien connue : on trouve une condition suffisante pour l’approximation en se réduisant à un problème de synthèse spectrale dans un certain espace de Lizorkin-Triebel doté de sa topologie faible . Deux exemples, dont l’origine est dans une construction de Hedberg, montrent que nos conditions sont fines.
We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.
@article{AIF_1996__46_4_1057_0, author = {Mateu, Joan and Netrusov, Yuri and Orobitg, Joan and Verdera, Joan}, title = {BMO and {Lipschitz} approximation by solutions of elliptic equations}, journal = {Annales de l'Institut Fourier}, pages = {1057--1081}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {4}, year = {1996}, doi = {10.5802/aif.1540}, zbl = {0853.31007}, mrnumber = {98c:41029}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1540/} }
TY - JOUR AU - Mateu, Joan AU - Netrusov, Yuri AU - Orobitg, Joan AU - Verdera, Joan TI - BMO and Lipschitz approximation by solutions of elliptic equations JO - Annales de l'Institut Fourier PY - 1996 SP - 1057 EP - 1081 VL - 46 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1540/ DO - 10.5802/aif.1540 LA - en ID - AIF_1996__46_4_1057_0 ER -
%0 Journal Article %A Mateu, Joan %A Netrusov, Yuri %A Orobitg, Joan %A Verdera, Joan %T BMO and Lipschitz approximation by solutions of elliptic equations %J Annales de l'Institut Fourier %D 1996 %P 1057-1081 %V 46 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1540/ %R 10.5802/aif.1540 %G en %F AIF_1996__46_4_1057_0
Mateu, Joan; Netrusov, Yuri; Orobitg, Joan; Verdera, Joan. BMO and Lipschitz approximation by solutions of elliptic equations. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1057-1081. doi : 10.5802/aif.1540. https://aif.centre-mersenne.org/articles/10.5802/aif.1540/
[A] A note on the Choquet integrals with respect to Hausdorff capacity, Lecture Notes in Math., 1302 (1988), 115-124. | MR | Zbl
,[AH] Function spaces and Potential Theory, Springer, Berlin and Heidelberg, 1996. | MR | Zbl
and ,[B] Approximation in the mean by solutions of elliptic equations, Trans. Amer. Math. Soc., 281 (1984), 761-784. | MR | Zbl
,[CA] Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Sup. Pisa, 18 (1964), 137-160. | Numdam | MR | Zbl
,[C] Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, Van Nostrand, Princeton, N. J., 1967. | MR | Zbl
,[FJ] A discrete transform and decompositions of distribution spaces, J. Func. Anal., 93 (1990), 34-170. | MR | Zbl
and ,[GR] Weighted norm inequalities and related topics, North-Holland Mathematical Studies, 116, Amsterdam, 1985. | MR | Zbl
and ,[GT] Degenerate cases of approximation by solutions of systems with injective symbols, Canad. J. Math., 20 (1993), 1-18. | Zbl
and ,[H] Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. | MR | Zbl
,[Ho] Extension theorems for functions of vanishing mean oscillation, Pacific J. of Math., 142 (1990), 277-295. | MR | Zbl
,[JW] Function spaces on subsets of Rn, Harwood Academic Publishers, Math. Reports, 2, Part 1, 1984. | MR | Zbl
and ,[M] A counterexample in Lp approximation by harmonic functions, preprint, 1995. | Zbl
,[MO] Lipschitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J., 39 (1990), 703-736. | MR | Zbl
and ,[MV] BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces, Rev. Mat. Iberoamericana, 4 (1988), 291-318. | MR | Zbl
and ,[MP] Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge, 1995. | MR | Zbl
,[MPO] On some properties of Hausdorff content related to instability, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 393-398. | MR | Zbl
and ,[ME] Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., 15 (1964), 717-721. | MR | Zbl
,[N1] Spectral synthesis in spaces of smooth functions, Russian Acad. Sci. Dokl. Math., 46, 1993), 135-138. | MR | Zbl
,[N2] Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Proc. Steklov Inst. Math., 187 (1990), 185-203. | Zbl
,[N3] Imbedding theorems for Lizorkin-Triebel spaces, Zapiski Nauchn. Sem. LOMI, 159 (1987), 103-112, English trans.: J. Soviet Math., 47 (1989). | Zbl
,[N4] Metric estimates of capacities of sets in the Besov spaces, Trudy Mian USSR, 190 (1989), 159-185, English trans.: Proc. Steklov Ins. Math., 190 (1992), 167-192. | MR | Zbl
,[OF1] Rational approximation in Lipschitz norms II, Proc. R. Ir. Acad., 75 A (1975), 317-330. | MR | Zbl
,[OF2] Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc., 288 (1977), 187-206. | MR | Zbl
,[OF3] Localness of certain Banach modules, Indiana Univ. Math. J., 24 (1975), 1135-1141. | MR | Zbl
,[St] Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl
,[TA] Approximation on compact sets by solutions of systems with surjective symbol, Russian Math. Surveys, 48-5 (1994), 103-145. | MR | Zbl
,[T] Theory of function spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. | Zbl
,[V1] Cm approximation by solutions of elliptic equations, and Calderón Zygmund operators, Duke Math. J., 55 (1987), 157-187. | MR | Zbl
,[V2] Removability, capacity and approximation, Complex Potential Theory, NATO ASI Series C, 439, Kluwer Academic Publishers, Dordrecht (1993), 419-473. | MR | Zbl
,[V3] BMO rational approximation and one dimensional Hausdorff content, Trans. Amer. Math. Soc., 297 (1986), 283-304. | MR | Zbl
,[W] Uniform approximation by solutions of elliptic equations, Proc. Amer. Math. Soc., 41 (1973), 267-290. | MR | Zbl
,Cité par Sources :