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BMO AND LIPSCHITZ APPROXIMATION BY
SOLUTIONS OF ELLIPTIC EQUATIONS

by J. MATEU, Y. NETRUSOV, J. OROBITG
and J. VERDERA

0. INTRODUCTION

Let L be a homogeneous elliptic operator of order r in R71 with
constant coefficients. Given a non-negative real number s and a compact
subset X of R71, let HS(X) be the set of those functions on X which are
limits, in the norm of Lip(5,X), of sequences (fn) such that L(fn) = 0 on
some neighbourhood (depending on n) of X. Here Lip(s, X) denotes the
space of functions on X satisfying a Lipschitz condition of order s. The
precise definition of Lip(s, X) is rather technical and will be postponed
to section 1. The reader should only keep in mind that for a non-integer s
convergence in Lip(s, X) is equivalent, at least for reasonable X, to uniform
convergence on X of all derivatives up to order [s] (the integer part of s)
and convergence of the derivatives of order [s] in the standard Lipschitz
(Holder) seminorm of order s — [s\. Bounded mean oscillation is involved
in the definition of Lip(«, X) for s = 0 and the Zygmund class for positive
integers s.

We are interested in describing functions in I I s (X). One finds readily
two simple necessary conditions: if / is in HS(X'} then / € lip(5,X), the
closure of C^^)^ in Lip(«, X), and L(f) = 0 on the interior X of X. If
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we set h3 (X) = {/ e lip(s,X) : L(/) = 0 on X}, then 7P(X) C /^(X), for
all X. The main problem of qualitative approximation by solutions of the
equation L(/) = 0 in the Lipschitz space of order s consists in describing
those X for which H8^) = h8 (X). A complete solution has been found in
the range r — 2 < 5 , s ^ r , thanks to the contributions of several authors
([MV], [MO], [OF1], [OF2], [VI], [V3]). In particular, the known results
cover the case of analytic functions in the plane (L = 9) and the case of
harmonic functions (L = A) in any dimension, with the only exception of
the limiting case s = 0 in dimensions n > 3. Other samples of the cases
left open up to now are L = 93 in the plane and 0 < 5 < l , o r L = A 2 and
0 < s < 2. The reader is referred to the recent survey [V2] for a detailed
description of the work done in the subject in the last twenty years.

In this paper we present a fairly complete picture of the situation in
the range 0 < 5 < r — 2. We show that the standard necessary condition
for the approximation on a compact X, namely

(1) M1,i~r+s(B\ X) ̂  ConstM^-^BVO, for each open ball B,
where M and At* denote Hausdorff content, and lower Hausdorff content,
respectively, is not always sufficient when s < r — 2. Our examples evolve
from one due to Hedberg in the L^ context [H] (see also [M]).

In the opposite sense, we find a finite set of capacitary conditions
(including (1)) expressed in terms of Hausdorff contents, which are sufficient
for the approximation on X (see Theorem 1 in the next section). When
r — 2 < s < r this sufficient condition reduces to (1), and hence we recover
the known theorem for that range. The examples of section 4 show that
none of the capacitary conditions can be dispensed with.

It is worth mentioning that, following the work of Bagby in the L^
context [B], it is not difficult to find necessary and sufficient conditions
for the approximation on X involving families of capacitary conditions (see
also [AH], 11.5.10, [Nl] and [TA]). However, most of the capacities involved
cannot be described in terms of Hausdorff content and, in fact, they are
very difficult to handle. Thus the conditions one would get would not be
really satisfactory.

Our method of proof is well known: one uses duality to reduce matters
to an appropriate spectral synthesis problem. In the case at hand we
proceed as follows.

The homogeneous Lipschitz spaces on R71 are particular examples of
Lizorkin-Triebel spaces and thus their duality theory is well understood.
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Duality arguments reduce our approximation problem to proving a weak *
o

spectral synthesis theorem for the Lizorkin-Triebel space Ff , 1 < q < oo;
the latter does not follow from the (strong) spectral synthesis theorem
for the same space proved by the second named author in [Nl] (see also
Chapter 10 of the book [AH]). We show that weak * spectral synthesis for
0

Ff ^ is a consequence of strong spectral synthesis in a certain generalized
0

Lizorkin-Triebel space F^y. The function u(t) satisfies uj^t'1 —> oo as
0

t —)• 0, which means that functions in Ff are not as smooth as those in
0

Ffg. However ci; satisfies certain regularity conditions, that turn out to
be good enough so that the proof of strong spectral synthesis described in
[AH], Chapter 10, can be adapted without difficulty to the more general
case we are forced to consider. One of our main contributions is precisely

0 0

to find a way to make the transition from Ff to Ff without loosing too
much regularity on a;.

In section 1 we set some notational conventions and state our results.
In section 2 we describe the reduction to spectral synthesis and in section 3
we prove the spectral synthesis result we need. Section 4 contains two
examples of failure of approximation, showing that our main theorem is, in
some sense, sharp.

1. BACKGROUND AND STATEMENT OF RESULTS

1.1. Lipschitz spaces and BMO.

Given 0 < s < 1 the space A^R") consists of those functions /
satisfying

11/H, =sup{^(f,6):6>0}< oo,

where ^s(f,6) = sup{|/(rr) - f(y)\ \x - y\-8 : \x - y\ < 6}. Clearly || ||,
is, modulo constants, a Banach space norm on A^R^.

Let / be a locally integrable function on R71. The mean oscillation of
/ on a ball B is

WB)=— [ \f(x)-fB\dx^W J B
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where \B\ is the Lebesgue measure of B and fa = \B\~1 fg f(x) dx is the
mean value of / on B. One says that / has bounded mean oscillation and
writes / € BMC^Br) if

||/||o=sup{o;o(/,(5):<?>0}<oo,

where ujo(f,6) = sup{^(/,B) : radius B < 6}. A well-known result of
Campanato [CA] and Meyers [ME] states that / e A^R71), 0 < s < 1, if
and only if for some constant C and all balls B one has
(2) ^(/ ,B)<C radius^)8.

Since for s = 0 (2) becomes the BMO condition, we set AO(Rn) = BMO^)
and we think of BMO as the limit of A8 as s tends to zero.

For s = 1 we let A^R^ stand for the Zygmund class, that is, for the
set of continuous functions / such that

||/||i=sup{^i(/^):^>0}<oo,

where 0:1 (/,<?) = sup{|/0r + h) + f(x - h) - 2f{x)\ \h\-1 : \h\ < 6}. The
quantity || ||i is, modulo first degree polynomials, a Banach space norm
onA1^71).

There is a well established fact that explains our choice of the end-
point spaces A° and A1, namely, that the family of spaces A3, 0 < s < 1,
is well behaved under Riesz potentials and Calderon-Zygmund operators.
The apparently more natural choices A° = L°° and A1 = Lip 1 (the class of
standard Lipschitz functions of order 1) lead to much harder removability
and approximation problems, most of which are still unsolved (see [V2]).

Given a positive real number s we write s = m + cr, with m integer
and 0<a<:l.l{s>l the space A^R71) consists of those functions with
continuous partial derivatives up to order m, satisfying Q^f € A^R"),
\a\ = m.

The quantity
sup H^/ll.

defines a Banach space norm on A^S^), modulo polynomials of degree m
if a < 1 and of degree m + l = 5 i f c r = l . For 0 <: s, we denote by Xs the
closure in A8 of Cy^R^), the class of all infinitely differentiable functions
with compact support on R". If / € A^R"), then (^(c^/, 6) -> 0, as 6 -> 0,
for |a| = m.

The (non-homogeneous) Banach space version of A5, which we pro-
ceed to define next, is in some sense more natural. A function / is in
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Lip^R^, s > 0, if it has bounded continuous derivatives up to or-
der m and Q^f C A^R") for |a| = m. If moreover ^((9°7,(?) -^ 0 as
6 —^ 0, |a| = m, then one writes / e lip^R71). The classes Lip^R^) and
lip^R") become Banach spaces when endowed with the norm

E llyvlloo+ E 11^11-
|o!|<m |o;|=m

Given a compact X c R"' set

Lip(5,X)=Lip(5,Rn)/J(X),

where J(X) = {/ € Lip(s,R71) : /(a;) = 0, x € X}, and

lip(5,X) = lip^R71)/^) nlip^.R71),

both endowed with the quotient norm. It turns out that, as sets of
functions, Lip(m,X) = L^m.R71))^ and lip(m,X) = lip(77^,Rn)|^ and
that lip(m,X) is the closure in Lip(m,X) of C^R71)^. The reader is
referred to [St] and [JW] for descriptions of the functions in Lip(m, X) and
lip(?n, X) related to variants of the Whitney extension theorem.

Define H8^) as the closure in Lip(s, X) of the set of restrictions to
X of functions g satisfying Lg = 0 on some neighbourhood (depending on
g) of X. Clearly

H^X) C lip(s, X) H {/ : Lf = 0 on X} = h8 (X).

We wish to define H8(X) and hs(X) also for s = 0. To avoid technical
complications we will deal with classes which are Banach spaces modulo
constant functions. Set A°(X) = A^R^/l^X), where

I{X) = {f € A°(R71) : / = 0 a.e. on X},

and A°(X) = XO(Rn)/I(X) D \°(W1). Functions in A°(X) and A°(X) can
be described in terms of their values on X, as shown in [GR], p. 440 and
[Ho]. We define H°(X) as the closure in A°(X) of the set of functions g
on X satisfying the equation Lg = 0 on some neighbourhood of X. Let

o
h°(X) denote the set of functions / in \°(X) such that Lf = 0 on X.
Then H°(X) C h°(X).

For 0 <: s < r there are no other obvious necessary conditions for
/ C H^X) besides Lf = 0 on X and / e Xs(X). The problem of Lips
(BMO if s = 0) approximation for the operator L, consists, for s < r,
in describing those X for which H8^) = h8 (X). For s >, r the reader is
referred to [OF1], [VI] and [V2].
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There is an interesting variant of the above problem arising when one
considers jets instead of functions. For s > 0 set

J(X) = {/ € Lip(s,R71) : 9Qf(x) = 0, x e X, |a| < m},
Lip^(s,X)=Lip(s,Rn)/J(X)

and
lipjet(5,X) = lip^R71)/^^) nlip(s,R71).

See [St], Chapter VI for general information about jets and Whitney
extension Theorem, and [V2] for a quick description of their role in
approximation. As before, we define H^(X) as the closure in Lip^(s,X)
of the set of equivalence classes §, where Lg = 0 on some neighbourhood
of X. We have

H^(X) C lipjet(5, X) H {/ : Lf = 0 on X } = h^(X).

For 0 < s < r, the problem of Lips-jet approximation for L consists
in characterizing those X for which H-^(X) = h^(X). It will be shown
in section 2 that the Lips and the Lips-jet problems are equivalent. This
was implicitly stated in [V2] but no proof was provided.

One can also define
A5(X)=Aa(Rn)/J(X)

and

where now

A^X) = A'Otrv^x) n A^R"),

I(X) = {/ e A^IT) : / = 0 on X}.

As before, one can formulate a A^-approximation (resp. Aj^) problem
for L, but it turns out that it is equivalent to the Lips (resp. LipSjet)
problem. A simple argument to prove that can be found in [VI], p. 184.
This technical remark will be used in section 2.

1.2. Hausdorff content.

A measure function is a non-decreasing function h(t), t > 0, such that
lim h(t) = 0. The Hausdorff content Mh related to a mesure function h is
t-^O
defined for A C R71 by

M^^inf]^/^),
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where the infimum is taken over all countable coverings of A by open balls
B(xi,pi). When h(t) = t01, a > 0, Mh(A) = M^A) is called the a-
dimensional Hausdorff content of A. The lower a-dimensional Hausdorff
content of A is defined by

AC (A) = sup M'1 (A),

the supremum being taken over all measure functions which satisfy h(t) <
^ and lim h^t-0' = 0.t-^o v /

1.3. The main result.

We proceed now to state our main result. The number d = n — r 4- s
in the statement below is the most relevant index in determining the
possibility of approximation.

THEOREM 1. — Let X C W1 be compact, 0 < s < r and set
d = n — r -j- s.

(i) IfH^X) = h8 (X) and d > 0 then there exists a constant C such
that

M^(B\ X) <, CMd(B\X), for each open ball B.

(ii) Define a set of indexes J as follows: J = {0} i f 0 < n - l < d and

J = {j C Z : j > 0 and 0 < d-\-j < n - 1}

in the remaining cases (that is, d < n - 1 or n = 1 and d = 0). If for each
j € J there exists a constant C such that

M^(B\ X) < GA^(B\X), for each open ball B,

then H^X) = h^X).

Some remarks on the above statement are in order.

1. In part (ii) we understand that if J is the empty set, then
H^X) = h8 (X). For instance, this holds for all X if n = 1 and d < 0
or if n = 2, s is integer and d < 0. In particular, for L = A, n = 2 and
s = 0 we recover a theorem proved in [MV] by methods not relying on
spectral synthesis.

It is a remarkable fact that our examples in section 4 show that
the cases listed above are the only ones in which H^X) = h^X) for
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all X. For example, in dimension 2, for an integer s > 0 and 0 < e < 1,
there exist compact sets XQ and X\ such that HS~E(XQ) ̂  hs~E{XQ) and
ff^(Xi) ^ /^(Xi), while H^X) = h8 (X) for all X (for 5 = 0 only the
claim about X\ has to be considered).

2. For L = A, n > 3 and 5=0, Theorem 1 gives the following result,
which confirms a conjecture formulated in [MV].

1.3.1. COROLLARY. — Let X C R71 be compact, n > 3, and assume
L = A. Then the following are equivalent:

(i) H°(X) = h°(X).

(ii) For some positive constant C,

AC-2^ X) < CM^^X), for each open ball B.

3. Assume now that r — 2 < s < r. Then J = {0} (at least if
n > 2) and thus Theorem 1 gives that H^X) = h^X) if and only if
^n-r+a^ ̂  ^ CW-^BVO, for some constant G and each open
ball B. This was proved in [VI] for r — 1 < s < r and in [MO] for
r - 2 < s < r - l .

4. For L = 9 in the plane and 0 < s < 1, Theorem 1 contains the
main results of [OF2], [V3].

1.4. Lizorkin-Triebel spaces.

General information on Lizorkin-Triebel spaces can be found in [T].
Here we recall only some basic facts and definitions we need in the sequel.

Let <? stand for the class of rapidly decreasing functions on R71 and
<?' for the set of tempered distributions. Denote by Z the set of functions
(p e S satisfying (^^(O) = 0, for all a, where (p is the Fourier transform
of (p. Then Z ' can be identified to S / P , P being the set of polynomials.
For the sake of notational convenience we will not distinguish between a
tempered distribution and its equivalence class in Z'. Then, by / € Z' we
understand the class of the tempered distribution / in S ' / P .

Let uj be a positive function on [0,oo). Given 1 < p and 1 < q
0

the homogeneous Lizorkin-Triebel space F^y associated to the weight uj
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consists of those / € Z ' admitting an expansion of the form

(3) /= E ^
i=—oo

where the Fourier transform of fi has compact support contained in
^(O^4-1)^^^-1), i € Z, the series is weak * convergent in Z ' and

ii(i;(^)n<-
l==—00 v /

When p = oo or q = oo we understand that £°°-norms are used in (4).

The infimum of (4), taken over all representations (3) described above,
0 0is a norm on Fp^. If uj(t) == ̂ , t € R, we get the classical Lizorkin-Triebel

0 0 0

spaces and we write F^q instead of F^q' We also let F^ Q stand for the
0 ^

closure in F^q of «?oo? the set of / € S such that / is compactly supported
0 0

with support disjoint from the origin. In fact, F^q == F^Q if 1 < p,
q < oo.

We recall that F^ = Z^, 1 < p < oo, and F^ = H1, the
Fefferman-Stein real Hardy space. Let It(f) be the Riesz potential of order
i € R of /, defined on the Fourier transform side by

WHO = irV(o.
Then F^ = ^(LP), Kp<oo, and F^ = ^(^rl). If 5>0, F^^ = A8

and F^^o = A8; likewise, F^ = BMO and F^,2,o = A°.
Our next task is to introduce a special class of functions uj for which0 ° .

-F^ enjoys most of the nice properties of F^q. Recall that a function p(t)
is called C-increasing ((7-decreasing) if for some positive constant C one
has p(t) < Cp(s) (p(t) > Cp(s)) whenever t < s.

DEFINITION. — For a positive real number i we denote by S1,(£) the
set of functions ̂  denned on [0, oo) satisfying

(i) ^(t}^ is C-decreasing,
(ii) for each m < £, ^(t)^""771 is Cm-iucreasing,

(iii) uj{t) = a^, t>,l, for some positive constant a.

When a; € ^(^), properties 1.4.1-1.4.4 below hold. The proof of this
fact is a lengthy, routine adaptation of the known arguments used to prove
the special case ^(t) = ̂  in [FJ], [T], [Nl] and [N4].
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1.4.1 THEOREM. — Let uj € n(<), £ > 0, 1 < p, g < oo.

(i) IfOlandfe F^ then 9f/9xj C F^7' , 1 < j < n.
0

(ii) The Riesz potential la of order a > 0 maps isomorphically F^^
ontoF^.

0

(iii) The space F^q is invariant under classical Calderon-Zygmund
operators with regular kernel.

1.4.2. DUALITY THEOREM. — Let a; € ̂ ), i > 0, and 1 < g <
oo. If - -h — = 1, thenq qf

I/O/( 0 \ * 0 , ,

(i) F^) = F^.

((") (^'.o)*-^-

The exterior capacity of a set A C W1 relative to F^p^ is the quantity

cap(A, F^) ̂ mfW ,
^

where the infimum is taken over all open sets G D A and functions
0 0

/ € F^^ n U1 such that / >, 1 a.e. on C?. The set function cap(-, F^q)
does not depend on q [N3]. When p = 1 there is a relation between capacity
and Hausdorff content given by the next result (see [N4], Theorem 2.3(b)).

1.4.3. THEOREM. — Let uj C ^(<), 0 < i < n and 1 < q <, oo.
Then for any set AcW,

C^M^^^^^^A, F^) ^CM^/^A),
where C is a constant independent of A.

0

As in the theory of Sobolev spaces the capacity associated to F^ can
0

be used to describe the continuity properties of elements in F^' . When
0

uj G ^(^), £• > n, each / in F^q is a continuous function (actually, we
should say that any representative of the class of / in «?'/P is a continuous

0

function). If i <_ n and / € F^q then a much weaker statement remains
true: / is in L^JR71) and

(5) { r(x)dM\x)<C\\f\\.^
J -1,9
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where h(t) = ^/ci;(t), /* is the Hardy-Littlewood maximal operator of
/ and C is independent of /. Thus / admits an M^-quasicontinuous
representative, that is, / can be modified outside a set of zero Lebesgue
measure so that, given e > 0, there exists an open set G with Mh(G) < e
such that the restriction of / to R^G is continuous on R^G (see [A] and
[N2]).

In particular, taking into account 1.4.1, if / e F^q then <9°7 is
continuous whenever 0 < \a\ < i - n and Q^f can be taken to be
M*" ot /^^-quasicontinuous whenever £ — n < \a\ < [£], [£} being the
integer part of £. We can now state the "strong" spectral synthesis theorem
for F^ [Nl].

1.4.4. SPECTRAL SYNTHESIS THEOREM. — Let UJ C f!(^), i > 0,

1 < q < oo and let F be a closed subset ofR71. Given / e F f , the
following are equivalent.

(i) There exists a sequence ((pj) of compactly supported C°° func-
0

tions on R71 such that spt ̂  H F = 0 for all j and (pj —^ f in Ff .

(ii) Let a be the largest integer less than £ and let j be the smallest
non-negative integer larger than or equal to £ - n. Then V^/ = 0 on F,
0<k <j, and V^/ = 0 M*"^/^) almost everywhere on F, j < k < a.

Remark. — Recall that we do not distinguish between a tempered
distribution and its equivalence class in Z ' . We emphasize that in (i) of

0

the statement above / is a class in F^q and in part (ii) we assert the
0

existence of some specific representative of the given class in F^ satisfying
the vanishing conditions stated there.

The next result is the basic tool in our proof of Theorem 1. We warn
the reader that the latest remark applies also to the statement below.

1.4.5. THEOREM 2 (Weak * spectral synthesis). — Let £ > 0,
1 < q < oo and let F be a closed subset ofR71. Let r be the maximum
between 1 and the largest integer less than ^, and let j be the minimum
between r and the smallest non-negative integer larger than i - n. If
/ € F^q satisfies

V^/ = 0 on F, 0 ̂  k < j ,
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and

V^/ = 0 M "̂̂  almost everywhere on F, j <, k < r - 1,
0

then / is in the weak * closure in Ff of the set of compactly supported
C°° functions on W1 with support disjoint from F.

Some remarks on Theorem 2 are in order.

1. One can prove that the sufficient conditions in Theorem 2 are also
necessary. The proof we know is too technical to be included here.

2. Observe that in condition (ii) of 1.4.4 there are a vanishing
conditions. Instead in Theorem 2, at least in most cases, one has T — 1
conditions. Thus, with the same <, Theorem 2 involves one condition less
than 1.4.4. For instance, take n = 3, i = 2, u(t) = t2 in 1.4.4. The vanishing
conditions are then / == 0 M1 a.e. on F and V/ = 0 M2 a.e. on F. If n = 3,
i = 2 in Theorem 2 the only vanishing hypothesis is / == 0 M^ a.e. on F.

2. PROOF OF THEOREM 1

2.1. Proof of Theorem 1, part (i).

LEMMA. — Let X c W1 be compact and 0 < s < r. Then
H^X) = h^X) if and only if H^(X) = h^{X).

Proof. — Consideration of the natural mapping from Lip-^(X) onto
Lip^X) shows that the condition is sufficient.

Assume now that H^X) = h8 (X) and let / € lipQr.R71), Lf = 0 on
X. We have to show that the jet / of / on X belongs to H^(X). We will
use the following two well-known facts.

First, H - ^ ( X ) is defined by local conditions, that is / € H-^(X)
if (and only if) each x € X has an open neighbourhood U such that
/ € H^(X n U). This is proved in [W], p. 515 (see also [OF3]).

On the other hand, if X has zero (n-dimensional Lebesgue) measure
then H^(X) = lipj^(X). See [W] (actually, in [W] one deals with an
integer s and another topology, but the argument goes through to cover
the situation we are envisaging).
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Let f denote the class of / in lip(s,X), so that / € HS(X). Given
e > 0 there exists g € lip^y) such that Lg = 0 on some neighbourhood
of X and ||/ - g\\up(s,x) < e. Thus ||/ - g - h\\up{s^ < e for some
h € lip(s, K71), h = 0 on X. Set s == m + cr, with m integer and 0 < a < 1.
Define

XQ = {x : ̂ (a;) = 0, H < m},

and for 1 < j < m,

Xj = {a;: Q^h^x) = 0, H < m - j,

and 9ah(x) ̂  0 for some a, |a| = m — j + l}.

It turns out that |X\Xo| = 0, the bars indicating Lebesgue measure.
m

This is a consequence of the fact that X\XQ = (J Xj and each Xj, j > 1,
j=i

is locally contained in a finite union of C^-hypersurfaces.

It is an elementary fact that h can be approximated in Lip(s, R71) by
functions vanishing on some neighbourhood of XQ. Then, without loss of
generality, we can assume that -F = g + h satisfies the equation LF = 0 on
some neighbourhood of XQ. We must show now that F € H^(X).

Fix x € X. If x € XQ, then there is an open ball B centered at x such
that LF = 0 on some neighbourhood of B. Thus F e H^(X D B).

If x C X\XQ, then there is an open ball B centered at x such that
\X H B\ = 0. Hence F e H^(X D B). Therefore F € H^(X), as desired.D

Now, it is clear that the argument given in [VI], p. 185 proves part (i)
of Theorem 1.

Notice that the statement of Theorem 2 in [VI] involves "func-
tions" but the proof in p. 185 works only for "jets". Thus the preceding
lemma fills the gap.

2.2. Proof of Theorem 1, part (ii).

By the last remark in subsection 1.1 of section 1 it is sufficient
to perform our approximation in the context of the homogeneous spaces
Xs{X). Recall that if s > 0, s = m+cr, with m integer and 0 < a < 1, then

A^^A^r1)/^),
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where
J(X) =={fe A^R71) : ̂ /(rc) == 0, x € X, H ̂  m}.

If s = 0 we simply set
A^(X)=A°(X).

The advantage of X-^(X) on lipj^(5,X) is that its dual space can be
described very simply in terms of Lizorkin-Triebel spaces. In fact, if s > 0

and if s = 0
(A^R^r^F^o^ h~^ .

(AO(Rn))*==(Foe,2,o)*=^ l(Rn),

and therefore

and

Aj^(x)* =^he Fi-i5 : spth c x\, s > o,

A°(X)* = {ft e H1^) : spth C X}.

The proof of (ii) in Theorem 1 proceeds by duality. We must prove
that if h e A|et(X)* (A°(X)* if 5 = 0) and h annihilates all jets / such
that Lf = 0 on some neighbourhood of X, then h annihilates also all jets
~ 0

/ € Ajet(X) such that Lf = 0 on X. Set g = h^E, E being the fundamental
solution of the operator L. We claim that

g C F^8 if s > 0, and g € F[^ if s = 0.

The Fourier transform of E has the form £'($) = cL(^)~1, where L($)
is an homogeneous polynomial of degree r. Set m($) = l^7'!/^)"1, so that
E(^) = c^OI^I"7'. The operator defined on the Fourier transform side by
(Tf)^ = mf is a Calderon-Zygmund operator [St], Theorem 6, p. 75 and
hence preserves Lizorkin-Triebel spaces. On the other hand convolution

0

with the Riesz kernel Ir of order r gives a bounded operator from F^ into

F[^8 (from Fi°2 into F^ if s = 0).

Consequently g = E * h = cr(Jy. * /i), and the claim is proved.

The orthogonality assumption on h implies that g vanishes on X°.
The next lemma indicates how to get from the hypothesis of (ii) some
information about the vanishing of g on 9X.

0

2.2.1. LEMMA. — Let 0 < t < n, and assume that g C F{^ or g C

F^2 ' L e t X C M71 be a compact such that M^^ X) ̂  CM^^X),
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for all open balls B. Ifg = 0 M71"* almost everywhere on X°, then g = 0
0

M^"* almost everywhere on (X)0.

Proof. — By the elementary inclusion relations between Lizorkin-
Triebel spaces, F^ C F{^ = It * ff^R71). For Jt * ̂ (IT) the lemma is
proved in [MO], p. 724-727. D

Set £ = r — s. Assume first £ > n. Let j be the largest integer such
that j < i—n-}-1, and k the largest integer such that k < £. If 0 < i <: j — 1,
then i-i > n. Since Q^g e F^\ {Q^g e F^ if s = 0) whenever |a| = z,
9ag is continuous for [a] < j? — 1. Therefore

V^=0on X0, (Xz^ j - 1 .

If J? ^ ^ ^ k — 1, then 0 < ^ — z < n. Applying Lemma 2.2.1 to the
i-th order derivatives of g we get

0

V^ = 0, M^'"^ almost everywhere on (X)0, j < i < k - 1.
0

Let now / € X-^(X) satisfy Lf = 0 on X. Since

/ € A3^) = J^,o (̂ ,2,0 if 5 = 0),

0 — / ° — \we have Lf e-F^^, o (^00^2,0 if 5 = 0). By the weak * spectral synthesis
0 0

theorem applied to g and the set (X)°^ given e > 0, there exists (p € C§°(X)
such that \{g - (p, Lf)\ < e. Thus

|<ft,/) | = \{h^Lf^E)\ = \{g^Lf)\ = \{g-^Lf}\ < e,
0

where the last identity follows from Lf = 0 on X. Hence {/i, /) = 0.

Assume now that £ < n. Let k be the maximum between 1 and the
largest integer less than i. Using again Lemma 2.2.1 we get

V^ = 0 AC-^' almost everywhere on (X)0, 0 ̂  i ̂  k - 1,

and so the weak * spectral synthesis theorem can be applied as above to
complete the proof. D

To finish this section we point out an interesting corollary (of the
proof) showing that one can solve the Lips-approximation problem for
sets with empty interior.
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2.2.2. COROLLARY. — Let X C R71 be compact, 0 < s < r and set
d = n — r + s.

Ifd>0 then the following are equivalent:

(i) H^X) = lip(5,X) (A°(X) for s = 0).

(ii) M^B^rAX) > Cr^ x e X , r > 0.

I f d < 0 then H^X) = lip{s,X) (A°(X) its = 0) for each X with
empty interior.

Remark. — Notice that any of the conditions (i) or (ii) implies that
X has empty interior.

Proof of the corollary. — Condition (ii) follows from (i) because of
Theorem 1 part (i) and M^(B(a;,r)) =rd.To prove (ii) => (i) we keep the
notation used in the proof of Theorem 1 part (ii). We proved there that

0 0

g = 0, M^ almost everywhere on (X)0. Since now X is empty we conclude
that g = 0 as a distribution, and thus h = Lg = 0. D

3. WEAK * SPECTRAL SYNTHESIS

In this section we prove Theorem 2.

Let q' be the dual exponent ofg, that is —-(" = 1. We must show thatq' q
0 .

given e > 0 and Gi, . . . , GN €F oo^o'there exists a function g e COO(Rn)
with support disjoint from F such that

\{f-g,G,}\<e, K j < N ,

where / is the function in the statement of Theorem 2.

We would like to apply Theorem 1.4.4 ((b) =^ (a)) and for that we
need to overcome two difficulties. First, we have to show that for some
^ e ̂ ), Gj OF ̂ ,, 1 ̂  j < N. This is given by the next lemma.

3.1. LEMMA. — Let (, and p be positive real numbers. For any
0 .

G € Foo,p,o there exists ^ e °(^ satisfying ^ / ( ^ ( t ) -^ 0 as t -^ 0, such
that G C FU^p .
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The second difficulty is related to the fact that condition (b) in
Theorem 1.4.4 involves a + 1 vanishing assumptions on /, while the
hypothesis in Theorem 2 contains only a vanishing assumptions (except
for the exceptional case £ < 1). Our second lemma provides the additional
vanishing condition we need.

3.2. LEMMA. — Let F C R71 be dosed, q > 1 and 1 < t < 2. If
f eF^q and f = 0, MJ1-* almost everywhere on F, then V/ = 0, M^-*+1

almost everywhere on F.

We postpone the proof of Lemmas 3.1 and 3.2 and we proceed to
complete the proof of Theorem 2.

Applying Lemma 3.1 with p = qf to each Gj we find o;j € Q,(£) such
that Gj CF^, 1 < j < N. Set a; = min(ct»i,..., c^v). Then a; e Q(^) and

^•^c^l^^.

^ °On the other hand, since r < Cu(t) we have / ^F^q. We are going to
show that the conditions in part (ii) of Theorem 1.4.4 are fulfilled. Assume,
for the sake of convenience, that £ < n (the case £ > n is dealt with
similarly). By hypothesis

(6) W = 0, M^'^3 almost everywhere on F, 0 < j < a - 1.

Excluding the exceptional case £ < 1, we have l < ^ — a + l < 2 . Lemma 3.2
can be applied to each Qaf^ \a\ = a — 1, with t = t — a + 1, to get
V°7 = 0, M^-^ almost everywhere on F. Since t^3 /uj(t) = t71-^3^)
with (p(t) —^ 0 as t —> 0, (6) implies

V-7 = 0, M '̂̂ ^ almost everywhere on F, 0 < j < a.

By Theorem 1.4.4 given e > 0 there exists a function g 6 C°° with support
disjoint from F such that

II/ - 9\\^ < Pe, where P-1 = ̂ ^ \\Gj\\^
-'9 oo, q

Finally, using duality (1.4.2)

\{f-g.G,}\<^C\\f-g\\. \\G,\\_ <Ce.
T^UJ " " TpW

-1.9 -oo,g'

Proof of Lemma 3.1. — Let G eF^/^o be given. Then there exist
functions Gmi m = 1,2,... such that
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(a) G = E Gm,
m=l

(b) the Fourier transform of Gm has compact support contained in
^(O^771^1)^^^"7^"1), where j(m) is an increasing sequence of
positive integers,

(C) \\Gm\\^ ^C^——HGH^ .
oo,q7 oo, q'

The construction of the Gm is easy. For each m there is (^ ^ <?oo
such that ||G-^||o_^ < 2-m||G||o_^ . The functions Gi = ^i and

oo,q7 oo, q1

Gm = pm — 9m-\i TO >_ 2^ clearly satisfy the above conditions.

To construct uj we start considering a continuous non-decreasing
function h(t) on the interval [0, oo) satisfying /i(0) =0, h(t) = 1, 1 ̂  t, and
/i(2-1) ^ 2-m/2, l ^ z ^ j(m) + 2, m = 1,2,... Unfortunately ^//i(t) does
not necessarily belong to ^2(^), because tE /h(t) could fail to be Cg-increasing
for some e > 0. Set

, , / t \ l / loglog(e/ t )
(p(t) = sup h(u) ( - ) , 0 < t < 1,

t<,u<,l v^ /

and (p(t) = 1, 1 ̂  t. A non-difficult but tedious computation shows that (/?
has the following properties:

1. (p is continuous on [0, oo), increasing on [0,1], y?(0) = 0, y?(^) = 1,
t ^ l .

2. y?(t) ^ /i(t) for all t. In particular

^(2-1) > 2-m/2, 1 < i < j(m) +2, m = 1,2 , . . . .

3. t^/^t) belongs to ^(^).

Take uj{t) = ̂ /^{t). We have to ascertain that G e ^^/- For each

m one can find a decomposition of type (3)

j(m)+2

^m = ^ ^ Jm,i')

i=-j{m)-2

such that

^ „. . . . ...̂ w2||Gm||°_< > sup ( ^ (|/^(a;)|2-")('')
F^' a;€R"vi=-^)-2 /
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This follows using the definition of the Lizorkin-Triebel spaces given
in [T], p. 238. Therefore

}(m)+2 ,

IIGmlk/, < SUp ( ^ (l/,^)!^-1))^)
F^' ^M" \^_^)_^ )

3(m)+2 ,

^2m/2sup( ^ (1/^)12-^')/g

^'•^-fe^ /

^C^HG^HO^ ^(^-"^UGHo^ ,
F , F .

oo,v oo,g'

where the last inequality comes from (c).

Finally

iî iî  <E 11^11^ ^wi^ E2"77172- D
oo,g7 m=l oo, 9' oo.g' 771=1

Proof of Lemma 3.2. — The case 1 < t < 2 is proven by a minor
variation of an argument used to prove Lemmas 3.2 and 3.3 in [MO].
Set D = {x C F : f{x} = 0 and V/(rr) ^ 0}. We wish to show that
M^-t-^l(D) = 0. From (5), as in Lemma 3.2 in [MO], one gets that M71-^1

almost all a e R71 satisfy

(7) lim / |/(a;)-/(a)-V/(a). (.r-a)^71-*4-1^-^ dM71-^1^) = 0.
r^0 ./B(a,r)

As in Lemma 3.3 in [MO] one proves M71-^1^)^, and so M;1-^1^)^.

When t = 2 the argument is a little trickier. Using (7) one obtains
that for M71"1 almost all a € D there exists a straight line L through the
origin for which
f8) lim ̂ "^^(^W^^)) ^ ov / r^o r71-1

for all 77, 0 < 77 < 1, where
X(a, L, 77) = [x C W 1 : dist(x - a, L) < rj\x - a|}.

If moreover one has that
M^CDn^a.r))

lim sup ———^——, > 0,
r-^Q r71-1

then one says that a -h L is an approximate tangent for D at a. Because of
the density theorem for HausdorfF content [MP], 6.3. (4), p. 92 and (8) we
conclude that M71"1 almost all points in D have an approximate tangent.
Thus, as in [MP], 15.22.(1), p. 214, one can show that D is (n-l)-rectifiable.
ThusM^-^I))^. D
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4. EXAMPLES

In this section we give two examples showing that none of the
sufficient conditions in Theorem 1, part (ii), can be dispensed with.

The first one, introduced by Hedberg in [H] (see also [GT]), shows
that when n > 3 and d = n — r + s ^ O o r when n = 2, d < 0 and
d ^ Z, there exists a compact X (necessarily with non-empty interior, in
view of the corollary in section 2) such that HS(X) ̂  h8 (X). In particular
this means that at least one of the sufficient conditions listed in (ii) of
Theorem 1 fails for this X.

We start by describing the example in the case of a non-integer s.
Then d < 0.

Let m be the positive integer satisfying 0 < Q ; = d + m < l . Consider
the interval in R71

I = ̂ (a;i,...,a;n) : -^ ̂ i < ^ anda;, =0, 2 <i < nl,

and take a sequence of disjoint open balls Bk = B{ak^pk)i o'k € J,
k = 1,2,..., such that the closure of UBjc contains J, Y^p^ < oo and
E Pk < 1/2. Set F = I\ U Bk. Then the length of F is larger than or equal
to 1/2, and so M^(F) > 0. Define X = B\ U B^ where B = B(0,1) and
B^==B(afc,^/2).

0

Our goal is to construct a distribution T € F-^~^ supported on X,
such that T annihilates H^X) but T does not annihilate h^X). In fact T
will be of the form T = L((p) for some (p appropriately chosen.

Take ̂  € C§°(Bk), ̂  = 1 on B^, |V |̂ ^ Cp '̂, 0 < j < r and

^o € Go°°(B), (^o = 1 on B(0,3/4). Set ̂ ) = ^o(^) - E ̂ k(x).
fc==i

Since (^? vanishes on UB^ and on Rn\B, the support of (p is contained in
X. On the other hand, (p(x) = rr^ on B(0,3/4)\ U BA;, and hence

Q^^KQxnf = m\ on F.

We claim that T = L((^) € A^X)* = {/ e F^f : spt/ C X}. A simple
computation shows that

IIW^OIIcc < C'lBfcl-1/^,

where s = n[- - l). Therefore x^y^)^" is a (p,oo)-atom and
consequently [FJ], Theorem 7.4

m__^c^p^<oo.
1,1
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Clearly (p = E * T. Since y? vanishes outside X , T annihilates H^X).

Applying Frostman^s Lemma [C], p. 7 we find a positive measure ^
supported on F, p,(F) > 0, such that ^i(B(x,r)) < ̂ (r)^, for all x e W
and r > 0, with e(r) -^ 0 as r -^ 0. We have 9mE/(9xn)m */A € /Is (X) [C],
p. 91. Since

(r,^/^)- *^ = (-i)^,^/./^)771)
^(-lY^j^/(Qx^Fd^

=(-l)^mmW)^0,
r does not annihilate h8 (X).

We now briefly indicate the changes needed to deal with the case
of integer s (recall that in this case n > 3). We choose m such that
a = d-\- m = 1. The above construction is not useful because M^(-F) = 0.
We replace I by the square

^(a;!,...,^) : ~ <Xi < ̂  i = 1,2, fmdxi = 0, 3 < z ^ nl,

and we take balls B^ as before requiring now Y^pk < oo and ^p^ < 1/2.
Then M^(F) > 0 and the argument goes on as above.

Our second example concerns the case d = n — r + s > 0.

PROPOSITION. — Assume 0 < d = n - r + 5 < n - 2 . Then there
exists a compact X cW1 such that H^X) ̂  h^X) and

(9) M^{B\ X) < CM^BVX), for all open balls B.

Remark. — Notice that the hypothesis on d implies n > 3. It can
be shown that i f 0 < d < n — 2 then, given a positive integer JQ with
d-\- Jo <n— 1, one can construct a compact X such that H8 (X) ̂  ^(X)
and

M^j(B\ X) < CM^^X), for all open balls B,

for all non-negative integers j ̂  jo satisfying d -h j < n — 1. This follows
from a slight modification of the argument given below.

Proof of the Proposition. — For the sake of expository clarity we
consider only the case n = 3 and s non-integer. Then 0 < d < 1. Our
construction starts with any arc 7 of diameter 1 in the square

^1,3:2,^3) : — <Xi ^ ^, i= 1,2, X3 =ol
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such that M^^^) > 0. Consider a sequence of polygonal arcs Pj such
that Pj H Pk = 0, j ̂  k, Pj H 7 = 0, for all j, and Pj -> 7 in the Hausdorff
distance. We can now associate to each j a finite sequence of open balls (in
R3) Bj^ = B(a^,pj), dj^ C Pj with the following properties:

(i) each x € R3 belongs to at most N balls B^, where N is a
numerical constant.

(ii) Set Sj = \jBj^ Then Sj D P^ and Sj -^ 7 in the Hausdorff
fc

distance.

(iii) Set Sj = \J B(a^, 2pj). Then 5^ n 5fc = 0, j 7^ fe, and S -̂ H 7 = 0
for all j.

^v) EP^ < 2-^, for each j.

Define X = B(0,1)\U^. According to [MPO], Th. 4 (9) follows
3

from

(10) M^(B(x,p)\X) > CT^, a; € <9X, 0 < p < p(x).

Clearly (10) is satisfied for x e 9X\7 because X satisfies an exterior cone
condition at those x. When x € 7 we use the fact that diam(B(rr, p)H7) > p.
Thus B ( x ^ p ) D Pj contains a continuum JF^ of diameter larger than p/2 if
j is large enough. Therefore, since 0 < d < 1,

M\B^p)\X)=Md(^Js,)^B^p))>Md{K,)
3

> (diam^)^ > 2~dpd.

We must show now that H8^) ^ h8(X). For this we follow closely
the argument in our first example.

Take ̂  e C§°(B(aj,2pj)) such that ̂ ^ = 1 on 5,, JV^-J ^
k

Cp]^ 0 < ^ < r, and <^o C ̂ (^(0,1)), (po = 1 on B(0,3/4). Set y(x) =
X3(po(x) - X3 ̂  ̂ ^ (a;). Clearly (p vanishes on |j Sj and R^I^O, 1), and so

j,k j
(p is supported on X. On the other hand, (p{x) = x^ on jE?(0,3/4)\(JS'j.

j
Hence 9(p/9x^ = 1 on 7.

Set T == L((^). Let us prove that TeA^X)* = {/e F^ : spt / C X}.
A simple computation shows that

\\L{x^\\^<C\B^\-^p^\
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where s = 3(- — l). Therefore x^(pj^{x)p^ + ) is a (p,oo)-atom and
consequently [FJ], Theorem 7.4

imi0 .^E^^E2"'^
J,fc 3

because of property (iv). Then T € A^X)*.

Since (p = E * T and y? vanishes outside X, T annihilates JEf^X).
Take a positive measure p, supported on 7 such that ^(7) > 0 and
p,(B(x,p)) < e{p)pd^l, for all x € R3 and p > 0, where e{p) —^ 0 as
p -^ 0. Then (QE/Ox^) * ̂  € ^(X) [C]. We have

<T, {QE/Qxs) * ̂  = (-1)^^, Q^/Qxs)

= (-l)^1 f(9y/9x,) dp. = (-1)^^(7) ^ 0.

Hence T does not annihilate /^(X). D
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