Considérons le cardinal de l’ensemble des racines cubiques de l’unité dans le groupe des classes de , où est un discriminant fondamental. Un résultat de Davenport et Heilbronn calcule la valeur moyenne de ces nombres quand varie. On obtient ici géométriquement une borne explicite pour le reste, avec la possibilité supplémentaire de restreindre les à des progressions arithmétiques. Des techniques de crible permettent alors d’évaluer la 3-partie des , où est pseudo-premier d’ordre . On contrôle ainsi simultanément le 2-rang et le 3-rang du groupe des classes . L’auteur donne en particulier une borne pour le 3-rang en moyenne des , où est premier.
Call the number of cube roots of unity in the class group of , where is a fundamental discriminant. Davenport and Heilbronn computed the mean value of these numbers when tends to . The author gives a general geometric argument yielding an explicit bound for the error term, with the additional possibility of restricting to arithmetic progressions. Sieve techniques then produce results about the 3-parts of the groups , where is an almost-prime of order . In this way, one controls simultaneously both the 2-rank and the 3-rank of the class group . As a special case, the author gives a bound for the mean 3-rank of the , where is prime.
@article{AIF_1996__46_4_909_0, author = {Belabas, Karim}, title = {Crible et 3-rang des corps quadratiques}, journal = {Annales de l'Institut Fourier}, pages = {909--949}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {4}, year = {1996}, doi = {10.5802/aif.1535}, zbl = {0853.11088}, mrnumber = {98b:11112}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1535/} }
TY - JOUR AU - Belabas, Karim TI - Crible et 3-rang des corps quadratiques JO - Annales de l'Institut Fourier PY - 1996 SP - 909 EP - 949 VL - 46 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1535/ DO - 10.5802/aif.1535 LA - fr ID - AIF_1996__46_4_909_0 ER -
%0 Journal Article %A Belabas, Karim %T Crible et 3-rang des corps quadratiques %J Annales de l'Institut Fourier %D 1996 %P 909-949 %V 46 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1535/ %R 10.5802/aif.1535 %G fr %F AIF_1996__46_4_909_0
Belabas, Karim. Crible et 3-rang des corps quadratiques. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 909-949. doi : 10.5802/aif.1535. https://aif.centre-mersenne.org/articles/10.5802/aif.1535/
[1] Real algebraic and semi-algebraic sets, Hermann, 1990. | MR | Zbl
and ,[2] Binary quadratic forms, Springer-Verlag, 1989. | Zbl
,[3] Heuristics on class groups of number fields, in Number Theory, Noordwijkerhout 1983, Lecture Notes in Math. n° 1068, Springer-Verlag, 1984. | Zbl
and .,[4] Density of discriminants of cubic extensions, J. reine. angew. Math., 386 (1988), 116-138. | MR | Zbl
and ,[5] On a principle of Lipschitz, J. Lond. Math. Soc., 26 (1951), 179-183. | MR | Zbl
,[6] On the class number of binary cubic forms (I), J. Lond. Math. Soc., 26 (1951), 183-192 (erratum, ibid. 27 (1951), p. 512). | Zbl
,[7] On the class number of binary cubic forms (II), J. Lond. Math. Soc., 26 (1951), 192-198. | MR | Zbl
,[8] On the density of discriminants of cubic fields (I), Bull. Lond. Math. Soc., 1 (1969), 345-348. | MR | Zbl
and ,[9] On the density of discriminants of cubic fields (II), Proc. Roy. Soc. Lond. A, 322 (1971), 405-420. | MR | Zbl
and ,[10] Sur le comportement en moyenne du rang des courbes y2 = x3 + k, in Séminaire de Théorie des Nombres Paris, 1990-1991, Birkhäuser, 1993, 61-83. | Zbl
,[11] Sieve methods, Academic Press, 1974. | MR | Zbl
and ,[12] Arithmetische Theorie der kubischen Zahlkörper auf klassenkörper-theoretischer Grundlage, Math. Zeitschrift, 31 (1930), 565-582. | JFM
,[13] A new form of the error term in the linear sieve, Acta. Arith., 37 (1980), 307-320. | MR | Zbl
,[14] Rosser's sieve, Acta. Arith., 36 (1980), 171-202. | MR | Zbl
,[15] Perversity and exponential sums, Adv. Stud. in Pure Math., 17 (1989), 210-259. | MR | Zbl
,[16] Transformation de Fourier et majoration de sommes exponentielles, Pub. Math. IHES, 62 (1985), 361-418. | Numdam | MR | Zbl
and ,[17] On the reduction and classification of binary cubic which have a negative discriminant, Proc. London Math. Soc., 10 (1912), 128-138. | JFM
,[18] Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sciences, série I Math., 305 (1987), 215-218. | MR | Zbl
,[19] On zeta functions associated with prehomogenous vector spaces, Ann. of Math., 100 (1974), 131-170. | MR | Zbl
and ,[20] On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan, 24 (1972), 132-188. | MR | Zbl
,[21] On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo, Sec. Ia, 22 (1975), 25-66. | MR | Zbl
,[22] Introduction à la théorie analytique et probabiliste des nombres, Pub. Inst. Élie Cartan, 1990. | Zbl
,[23] On the volume of tubes, Amer. J. of Math., 61 (1939), 461-472. | JFM | Zbl
,Cité par Sources :