We study -actions of the form , where is the dual (to ) -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action is given. It is shown that the doubled actions have a number of nice properties, if is spherical or of complexity one.
Nous étudions les actions de la forme où est la -variété duale de . Ces actions sont appelées les doubles. Nous donnons une interprétation géométrique de la complexité de l’action . Nous montrons que les actions doublées ont un certain nombre de bonnes propriétés, lorsque est sphérique ou de complexité un.
@article{AIF_1995__45_4_929_0,
     author = {Panyushev, Dmitri I.},
     title = {Reductive group actions on affine varieties and their doubling},
     journal = {Annales de l'Institut Fourier},
     pages = {929--950},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {4},
     year = {1995},
     doi = {10.5802/aif.1479},
     zbl = {0831.14022},
     mrnumber = {96i:14039},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1479/}
}
                      
                      
                    TY - JOUR AU - Panyushev, Dmitri I. TI - Reductive group actions on affine varieties and their doubling JO - Annales de l'Institut Fourier PY - 1995 SP - 929 EP - 950 VL - 45 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1479/ DO - 10.5802/aif.1479 LA - en ID - AIF_1995__45_4_929_0 ER -
%0 Journal Article %A Panyushev, Dmitri I. %T Reductive group actions on affine varieties and their doubling %J Annales de l'Institut Fourier %D 1995 %P 929-950 %V 45 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1479/ %R 10.5802/aif.1479 %G en %F AIF_1995__45_4_929_0
Panyushev, Dmitri I. Reductive group actions on affine varieties and their doubling. Annales de l'Institut Fourier, Tome 45 (1995) no. 4, pp. 929-950. doi: 10.5802/aif.1479
[B1] , Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple, Ann. Inst. Fourier, 33-1 (1983), 1-27. | Zbl | MR | Numdam
[B2] , Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J., 58 (1989), 397-424. | Zbl | MR
[HH] , , Projective invariants of four subspaces, Preprint. | Zbl
[KR] , , Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. | Zbl | MR
[Li] , On spherical double cones, J. Algebra, 166 (1994), 142-157. | Zbl | MR
[Lu] , Adhérences d'orbite et invariants, Invent. Math., 29 (1975), 231-238. | Zbl | MR
[LR] , , A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. | Zbl | MR
[P1] , Orbits of maximal dimension of solvable subgroups of reductive algebraic groups and reduction for U-invariants, Math. USSR-Sb., 60 (1988), 365-375. | Zbl | MR
[P2] , Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. | Zbl | MR
[P3] , Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. | Zbl | MR
[P4] , Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. | Zbl | MR
[P5] , A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. | Zbl | MR
[P6] , Good properties of algebras of invariants and defect of linear representations, J. Lie Theory, 5 (1995). | Zbl | MR
[Po1] , A stability criterion for an action of a semisimple group on a factorial variety, Math. USSR-Izv., 4 (1971), 527-535. | Zbl
[Po2] , Contractions of the actions of reductive algebraic groups, Math. USSR-Sbornik, 58 (1987), 311-335. | Zbl
[Ri] , On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc., 25 (1982), 1-28. | Zbl | MR
[Sch1] , Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12. | Zbl | MR
[Sch2] , Lifting smooth homotopies of orbit spaces, Publ. Math. I.H.E.S., 51 (1980), 37-135. | Zbl | MR | Numdam
[VP1] , , On a class of quasihomogeneous affine varieties, Math. USSR-Izv., 6 (1972), 743-758. | Zbl | MR
[VP2] , , Invariant theory, in : “Encyclopaedia Math. Sci.” 55, Berlin, Springer, 1994, 123-284. | Zbl
Cité par Sources :



