For , any totally ramified cyclic extension of degree of local fields which are finite extensions of the field of -adic numbers, we describe the -module structure of each fractional ideal of explicitly in terms of the indecomposable -modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.
Pour n’importe quelle extension cyclique ramifiée de degré des corps locaux qui sont des extensions finies du corps des nombres -adiques, nous proposons une description de la -structure de chaque idéal fractionnaire de utilisant les modules indécomposables sur que Heller et Reiner ont classifié. Les exposants sont entièrement déterminés par les invariants de la ramification.
@article{AIF_1995__45_3_625_0, author = {Elder, Gove Griffith}, title = {Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$}, journal = {Annales de l'Institut Fourier}, pages = {625--647}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {3}, year = {1995}, doi = {10.5802/aif.1468}, zbl = {0820.11070}, mrnumber = {96d:11125}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1468/} }
TY - JOUR AU - Elder, Gove Griffith TI - Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$ JO - Annales de l'Institut Fourier PY - 1995 SP - 625 EP - 647 VL - 45 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1468/ DO - 10.5802/aif.1468 LA - en ID - AIF_1995__45_3_625_0 ER -
%0 Journal Article %A Elder, Gove Griffith %T Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$ %J Annales de l'Institut Fourier %D 1995 %P 625-647 %V 45 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1468/ %R 10.5802/aif.1468 %G en %F AIF_1995__45_3_625_0
Elder, Gove Griffith. Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$. Annales de l'Institut Fourier, Volume 45 (1995) no. 3, pp. 625-647. doi : 10.5802/aif.1468. https://aif.centre-mersenne.org/articles/10.5802/aif.1468/
[1] Sur l'arithmétique d'une extension cyclique totalement ramifiée d'un corps local, C. R. Acad. Sc. Paris, 281 (1975), 67-70. | MR | Zbl
,[2] Sur les extensions cycliques de degré pn d'un corps local, Acta Arith., 34-4 (1979), 361-377. | MR | Zbl
,[3] Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sc. Paris, 274 (1972), 1388-1391. | MR | Zbl
, , ,[4] On Galois isomorphisms between ideals in extensions of local fields, Manuscripta Math., 73 (1991), 289-311. | MR | Zbl
,[5] Methods of Representation Theory, Wiley, New York, 1981.
, and ,[6] Galois module structure of integers in wildly ramified cyclic extensions, J. Number Theory, 47 #2 (1994), 138-174. | MR | Zbl
, and ,[7] Sur L'anneau des entiers de certaines extensions cycliques d'un corps local, Astérisque, 24-25 (1975), 21-28. | MR | Zbl
,[8] Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Bd. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR | Zbl
,[9] Bericht über neuere Untersuchungen und Probleme aus der Theorie der Algebraischen Zahlkörper, Physica-Verlag, Würzburg-Wien, 1970.
,[10] Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math., 201 (1959), 119-149. | EuDML | MR | Zbl
,[11] Artin-Schreier equations in characteristic zero, Am. J. of Math., 78 (1956), 473-485. | MR | Zbl
, and ,[12] Bases normales et constante de l'équation fonctionnelle des fonctions L d'Artin, Séminaire Bourbaki (1973/1974) no. 450. | EuDML | Numdam | Zbl
,[13] Existenz β-adischer Zahlkörper zu Vorgegebenem Verzweigungsverhalten, Dissertation, Hamburg, 1965.
,[14] On the ramification numbers of cyclic p-extensions over local fields, J. Reine Angew. Math., 328 (1981), 99-115. | EuDML | MR | Zbl
,[15] On the module structure of a p- extension over a p-adic number field, Nagoya Math. J., 77, (1980), 13-23. | MR | Zbl
,[16] Galois module structure of rings of integers, Math. Z., 204 (1990), 401-424. | EuDML | MR | Zbl
, , ,[17] On automorphisms of local fields, Ann. Math., (2) 90 (1969), 33-46. | MR | Zbl
,[18] Local fields, Graduate Texts Mathematics, Vol. 67. Springer-Verlag, Berlin-Heidelberg-New York 1979. | Zbl
,[19] Ideals of an abelian p- extension of a local field as Galois modules, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. SSSR, 57 (1976), 64-84. | Zbl
,[20] Wildly ramified gamma extensions, Am. J. Math., 91 (1969), 135-152. | MR | Zbl
,[21] On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., 16 (1960), 83-90. | MR | Zbl
,Cited by Sources: