We consider the Schrödinger operators in where the nonnegative potential belongs to the reverse Hölder class for some . We obtain the optimal estimates for the operators and where . In particular we show that is a Calderón-Zygmund operator if and are Calderón-Zygmund operators if .
Nous considérons des opérateurs de Schrödinger dans où le facteur non négatif appartient à la classe de Hölder inversée pour tout . Nous obtenons les estimations optimales pour les opérateurs et où . En particulier nous montrons que est un opérateur de Calderón-Zygmund si and sont des opérateurs de Calderón-Zygmund si .
@article{AIF_1995__45_2_513_0, author = {Shen, Zhongwei}, title = {$L^p$ estimates for {Schr\"odinger} operators with certain potentials}, journal = {Annales de l'Institut Fourier}, pages = {513--546}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {2}, year = {1995}, doi = {10.5802/aif.1463}, zbl = {0818.35021}, mrnumber = {96h:35037}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1463/} }
TY - JOUR AU - Shen, Zhongwei TI - $L^p$ estimates for Schrödinger operators with certain potentials JO - Annales de l'Institut Fourier PY - 1995 SP - 513 EP - 546 VL - 45 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1463/ DO - 10.5802/aif.1463 LA - en ID - AIF_1995__45_2_513_0 ER -
%0 Journal Article %A Shen, Zhongwei %T $L^p$ estimates for Schrödinger operators with certain potentials %J Annales de l'Institut Fourier %D 1995 %P 513-546 %V 45 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1463/ %R 10.5802/aif.1463 %G en %F AIF_1995__45_2_513_0
Shen, Zhongwei. $L^p$ estimates for Schrödinger operators with certain potentials. Annales de l'Institut Fourier, Volume 45 (1995) no. 2, pp. 513-546. doi : 10.5802/aif.1463. https://aif.centre-mersenne.org/articles/10.5802/aif.1463/
[CM] Au-delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978). | MR | Zbl
and ,[D] H∞ Functional Calculus of Elliptic Partial Differential Operators in Lp Spaces, Ph.D. Thesis, Macquarie University, 1990.
,[F] The Uncertainty Principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. | MR | Zbl
,[G] The Lp-integrability of the Partial Derivatives of a Quasi-conformal Mapping, Acta Math., 130 (1973), 265-277. | MR | Zbl
,[GT] Elliptic Partial Differential Equations of Second Order, Second Ed., Springer Verlag, 1983. | Zbl
and ,[H] A Multiplier Theorem for Schrödinger operators, Colloquium Math., LX/LXI (1990), 659-664. | Zbl
,[HN] Une Ingégalité L2, preprint.
and ,[M] Weighted Norm Inequality for the Hardy Maximal Function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR | Zbl
,[RS] Hypoelliptic Differential Operators and Nilpotent Groups, Acta Math., 137 (1977), 247-320. | MR | Zbl
and ,[Sh] On the Neumann Problem for Schrödinger Operators in Lipschitz Domains, Indiana Univ. Math. J., 43(1) (1994), 143-176. | MR | Zbl
,[Sm] Parametrix Construction for a Class of Subelliptic Differential Operators, Duke Math. J., (2)63 (1991), 343-354. | MR | Zbl
,[St1] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | MR | Zbl
,[St2] Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl
,[T] Riesz Transforms and the Wave Equation for the Hermite Operators, Comm. in P.D.E., (8)15 (1990), 1199-1215. | MR | Zbl
,[Z] Harmonic Analysis for Some Schrödinger Type Operators, Ph.D. Thesis, Princeton University, 1993.
,Cited by Sources: