Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles . Nous construisons une stratification et une décomposition cellulaire analytique de , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue de tous les systèmes hamiltoniens antisymétriques accessibles si la dimension de l’espace d’entrée est plus grande que 1. En utilisant des travaux de M. Guest et U. Helmke, on peut ainsi donner une démonstration du théorème de périodicité de Bott.
In this paper we construct canonical forms with continue on the strata of the stratification on the space of reachable antisymmetric hamiltonian linear systems . We prove that the homology group of is isomorphic to those of the Grassmann manifold. Then we prove that is homotopically equivalent to the space of reachable linear systems.
@article{AIF_1994__44_3_967_0, author = {Phan Nguyen Huynh}, title = {Sur la topologie de l'espace des syst\`emes lin\'eaires hamiltoniens anti sym\'etriques accessibles}, journal = {Annales de l'Institut Fourier}, pages = {967--985}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {3}, year = {1994}, doi = {10.5802/aif.1422}, zbl = {0811.70012}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1422/} }
TY - JOUR AU - Phan Nguyen Huynh TI - Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles JO - Annales de l'Institut Fourier PY - 1994 SP - 967 EP - 985 VL - 44 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1422/ DO - 10.5802/aif.1422 LA - fr ID - AIF_1994__44_3_967_0 ER -
%0 Journal Article %A Phan Nguyen Huynh %T Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles %J Annales de l'Institut Fourier %D 1994 %P 967-985 %V 44 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1422/ %R 10.5802/aif.1422 %G fr %F AIF_1994__44_3_967_0
Phan Nguyen Huynh. Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 967-985. doi : 10.5802/aif.1422. https://aif.centre-mersenne.org/articles/10.5802/aif.1422/
[1] Combinatorial theory, Grundlehren der Math. Wissenschaften, 234, Springer, 1979. | MR | Zbl
,[2] A survey of modern algebra, Macmillan, New-York, 1977. | Zbl
and ,[3] La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1966), 461-513. | Numdam | Zbl
et ,[4] Lecture on Morse Theory, Mathematische Institut der Universität Bonn, 1960.
,[5] The stable homotopy of the classical groups, Annals of Math., 70 (1959), 313-337. | MR | Zbl
,[6] Some geometric questions in the theory of linear systems, IEEE Trans. Autom. Control AC., 21 (1976), 449-455. | MR | Zbl
,[7] A classification of linear controllable systemes, Kybernetica, 3 (1970), 173-187. | MR | Zbl
,[8] Algebraic and Geometric aspects of the analysis of feedback systems, NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences, vol. 62 : Geometrical Methods for the Theory of linear systems, eds C.I. Byrnes and C. Martin (Pro. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 83-122. | MR | Zbl
,[9] A note on the topology of space of Hamiltonian transfer functions, Lectures in Appl. Math., vol. 18, p. 7-26, 1980, AMS-NASA-NATO Summer Sem., Havard Univ. Cambridge, Mass.
and ,[10] On certain topological invariants arising in system theory, from New Directions in Applied Mathematics 13, P. Hilton, G. Young eds, New-York, Springer, Verlag, 29-71, 1981. | Zbl
and ,[11] Foundations of modern analysis, vol. 3, Academic Press, 1972.
,[12] Some relationships between homotopy theory and differential geometry, Ph. D. Thesis, Wolfson college, University of Oxford, 1981.
,[13] Differential topology, Prentice-Hall, Englewood Cliffs., New Jersey, 1974. | MR | Zbl
and ,[14] Moduli and canonical forms for linear dynamical systems II, The topological case, Math. Systems Theory, 10 (1976/1977), 363-385. | MR | Zbl
,[15] Moduli and canonical forms for linear dynamical systems. III: The algebraic geometry case, Lie Groups: History frontiers and Applications, vol. 7, The 1976 AMES Research Center (NASA) Conference on Geometric Control Theory, C. Martin and R. Hermann eds, p. 291-336, Mat. Sci. Press. | Zbl
,[16] (Fine) Moduli (Space) for linear systems: What are they and What are they good for? NATO Advanced Study Institutes Series, Series C, Mathematical and Physical Sciences, vol. 62: Geometrical Methods for the Theory of linear systems, C.I. Byrnes and C. Martin eds (Proc. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 125-193. | MR | Zbl
,[17] Zur topologie des Raumes linearer Kontrollsysteme, Ph. D. Thesis, University Bremen, 1982.
,[18] Metrical and topological aspects of linear control theory., Syst. Anal. Model. Simul., 4 (1987), 1, 3-36. | MR | Zbl
,[19] Introduction to Mathematical system theory, Lecture notes for a joint course at the Universities of Warwick and Bremen, 1983. | Zbl
, , , and al.,[20] Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York, 1976. | MR | Zbl
,[21] Topics in Mathematical System Theory, McGraw-Hill, 1969. | Zbl
, and ,[22] Sur un critère d'équisingularité, fonctions de plusieurs variables complexes, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, New York, vol. 409 (1974), 124-160. | MR | Zbl
,[23] Cycles évanescents, sections planes et conditions de Whitney II, Proc. Symposia Pure Math., vol. 40, part 2 (1983), 65-103. | MR | Zbl
et ,[24] Some space of holomorphic maps to complex Grassmann manifolds, J. Differential Geometry, 33 (1991), 301-324. | MR | Zbl
and ,[25] Homology and homotopy theory, Marcel Dekker, New York, 1978.
,[26] Morse theory, Princeton University Press, 1963. | Zbl
,[27] Characteristic classes, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. | MR | Zbl
and ,[28] Introduction à la théorie des groupes de Lie classiques, Méthodes, Hermann, Paris, 1986. | MR | Zbl
et ,[29] Analysis on real and complex manifold, Masson CIE, Paris, North-Holland Pub. Comp., Amsterdam, 1968. | MR | Zbl
,[30] On the topology of the space of reachable symmetric linear systems, Math. J. (TAP CHI TOAN HOC), Ha Noi, XV, I (1987), 16-26. | MR | Zbl
,[31] On the topology of the space of reachable symmetric linear systems, Lecture Notes in Mathamatics, vol. 1474, 1991, 235-253, Springer-Verlag, Berlin-Heidelberg, New York (Proccedings of the International Conference on Algebraic Topology, Poznan, Poland, June 22-27, S. Jackowski, B. OLiver, K. Pawalowski eds). | MR | Zbl
,[32] On the topology of the space of reachable skew-symmetric Hamiltonian linear systems, Rendiconti di Matematica, Serie VII, vol. 11, Roma 541-558, 1991. | MR | Zbl
,[33] Invariant description of linear time-invariant controllable systems, SIAM J. Control, 10 (1972), 252-264. | MR | Zbl
,[34] Algebraic topology, McGraw-Hill, New York, 1966. | MR | Zbl
,[35] The topology of space of rational funtions, Acta Math., 143 (1979), 39-72. | MR | Zbl
,[36] Tangents to an analytic variety, Ann. of Math., (2), 81 (1965), 496-549. | MR | Zbl
,[37] Linear multivariable control : A geometric approach, Lecture Notes, Economical and Math. Systems, 101, Springer, 1974. | Zbl
,Cité par Sources :