For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus in a small angle near the real axis, can be estimated by Const for sufficiently large depending on . Here is the dimension.
Pour le laplacien de Dirichlet de l’extérieur d’un obstacle strictement convexe, nous montrons que le nombre de pôles de scattering de module dans un angle près de l’axe réel, peut être majoré par Const pour assez grand dépendant de . Ici est la dimension.
@article{AIF_1993__43_3_769_0, author = {Sj\"ostrand, Johannes and Zworski, Maciej}, title = {Estimates on the number of scattering poles near the real axis for strictly convex obstacles}, journal = {Annales de l'Institut Fourier}, pages = {769--790}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {3}, year = {1993}, doi = {10.5802/aif.1355}, zbl = {0784.35073}, mrnumber = {94h:35197}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1355/} }
TY - JOUR AU - Sjöstrand, Johannes AU - Zworski, Maciej TI - Estimates on the number of scattering poles near the real axis for strictly convex obstacles JO - Annales de l'Institut Fourier PY - 1993 SP - 769 EP - 790 VL - 43 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1355/ DO - 10.5802/aif.1355 LA - en ID - AIF_1993__43_3_769_0 ER -
%0 Journal Article %A Sjöstrand, Johannes %A Zworski, Maciej %T Estimates on the number of scattering poles near the real axis for strictly convex obstacles %J Annales de l'Institut Fourier %D 1993 %P 769-790 %V 43 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1355/ %R 10.5802/aif.1355 %G en %F AIF_1993__43_3_769_0
Sjöstrand, Johannes; Zworski, Maciej. Estimates on the number of scattering poles near the real axis for strictly convex obstacles. Annales de l'Institut Fourier, Volume 43 (1993) no. 3, pp. 769-790. doi : 10.5802/aif.1355. https://aif.centre-mersenne.org/articles/10.5802/aif.1355/
[M1] Polynomial bounds on the number of scattering poles, J. Funct. An., 53 (1983), 287-303. | MR | Zbl
,[M2] Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées équations aux dérivées partielles, Saint Jean de Monts (1984) (published by Centre de Mathématiques, École Polytechnique, Palaiseau, France). | EuDML | Numdam | Zbl
,[R] Autour de l'approximation semi-classique, Progress in Math., vol. 68, Birkhäuser (1987). | MR | Zbl
,[O] The asymptotic expansions of Bessel functions of large order, Phil. Trans. Roy. Soc. London, Ser. A, 247 (1954), 328-368. | MR | Zbl
,[S] Geometric bounds on the density of resonances for semi-classical problems, Duke Mathematical Journal, 61 (1) (1990), 1-57. | MR | Zbl
,[SZ1] Complex scaling and the distribution of scattering poles, Journal of the AMS, 4 (4) (1991), 729-769. | MR | Zbl
, ,[SZ2] Distribution of scattering poles near the real axis, Comm. P.D.E., 17 (5 & 6) (1992), 1021-1035. | MR | Zbl
, ,[V] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., 146 (1992), 205-216. | MR | Zbl
,Cited by Sources: