Théorie de jauge et symétries des fibrés
Annales de l'Institut Fourier, Volume 43 (1993) no. 2, pp. 509-537.

Let ξ be a smooth G-principal bundle over a manifold M (G being a compact Lie group). Given an action of a compact Lie group Γ on M, one asks the question whether it comes from an action on the bundle ξ. In this paper, this question is shown to be essentially equivalent to the existence of fixed points for the naturally induced actions of Γ on various moduli spaces of G-connections on M.

Soit ξ un G-fibré principal différentiable sur une variété M (G un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact Γ sur M, on se pose la question de savoir si elle provient d’une action sur le fibré ξ. L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de Γ que l’on induit naturellement sur divers espaces de modules de G-connexions sur ξ.

@article{AIF_1993__43_2_509_0,
     author = {Brandt, D. and Hausmann, Jean-Claude},
     title = {Th\'eorie de jauge et sym\'etries des fibr\'es},
     journal = {Annales de l'Institut Fourier},
     pages = {509--537},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {43},
     number = {2},
     year = {1993},
     doi = {10.5802/aif.1344},
     zbl = {0778.57018},
     mrnumber = {94c:57056},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1344/}
}
TY  - JOUR
TI  - Théorie de jauge et symétries des fibrés
JO  - Annales de l'Institut Fourier
PY  - 1993
DA  - 1993///
SP  - 509
EP  - 537
VL  - 43
IS  - 2
PB  - Imprimerie Louis-Jean
PP  - Gap
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1344/
UR  - https://zbmath.org/?q=an%3A0778.57018
UR  - https://www.ams.org/mathscinet-getitem?mr=94c:57056
UR  - https://doi.org/10.5802/aif.1344
DO  - 10.5802/aif.1344
LA  - fr
ID  - AIF_1993__43_2_509_0
ER  - 
%0 Journal Article
%T Théorie de jauge et symétries des fibrés
%J Annales de l'Institut Fourier
%D 1993
%P 509-537
%V 43
%N 2
%I Imprimerie Louis-Jean
%C Gap
%U https://doi.org/10.5802/aif.1344
%R 10.5802/aif.1344
%G fr
%F AIF_1993__43_2_509_0
Brandt, D.; Hausmann, Jean-Claude. Théorie de jauge et symétries des fibrés. Annales de l'Institut Fourier, Volume 43 (1993) no. 2, pp. 509-537. doi : 10.5802/aif.1344. https://aif.centre-mersenne.org/articles/10.5802/aif.1344/

[Bn] K. Brown, Cohomology of groups, Springer-Verlag, New York, 1982. | MR: 83k:20002 | Zbl: 0584.20036

[Do] S. Donaldson, Connections, cohomology and the intersection forms of 4-manifolds, J. of Differential Geometry, 24 (1986), 275-341. | Zbl: 0635.57007

[FS] R. Fintushel & R. Stern, Definite 4-manifolds, J. of Differential Geometry, 28 (1988), 133-141. | MR: 89i:57006 | Zbl: 0662.57009

[HY] A. Hattori & T. Yoshida, Lifting compact actions in fiber bundles, Japan J. of Math., 2 (1976), 13-25. | MR: 57 #1523 | Zbl: 0346.57014

[La] Bl. Lawson, The theory of gauge fields in four dimensions, Regional Conf. series in Math., 58 (AMS 1985). | MR: 87d:58044 | Zbl: 0597.53001

[LMS] R. Lashof & J. May & G. Segal, Equivariant bundles with abelian structural group, Contemporary Math., Vol 19 (AMS 1983), 167-176. | MR: 85b:55023 | Zbl: 0526.55020

[KN] S. Kobayashi & K. Nomizu, Foundations of differential topology, Vol I et II, Interscience, New York, 1969. | Zbl: 0175.48504

[PS] R. Palais & T. Stuart, The cohomology of differentiable transformation groups, Amer. J. of Math., 83 (1961), 623-644. | MR: 25 #4030 | Zbl: 0104.17703

[St] T. Stuart, Lifting group actions in fibre bundle, Annals of Math., 74 (1961), 192-198. | MR: 23 #A3798 | Zbl: 0116.40502

[VE] Van Est, On the algebraic cohomology concepts in Lie groups, Indigat. Math., 18 (1955), I, 225-233 ; II, 286-294. | MR: 17,61b | Zbl: 0067.26202

[Wa] Sh. Wang, Moduli spaces over manifolds with involutions, to appear (Preprint, Michigan State Univ. at East Lansing).

Cited by Sources: