By choosing certain Birkhoff’s section to the geodesic flow of a negatively curved closed surface, E. Ghys showed that the unstable foliation of the geodesic flow has a transversely piecewise linear structure. We explicitly describe the holonomy homomorphism induced by this transversely piecewise linear structure and calculate its discrete Godbillon-Vey invariant.
En choisissant une certaine section de Birkhoff pour le flot géodésique d’une surface compacte à courbure négative, E. Ghys a montré que le feuilletage instable du flot géodésique admet une structure transversalement affine par morceaux. Nous explicitons l’holonomie globale induite par cette structure transversalement affine par morceaux et calculons son invariant de Godbillon-Vey discret.
@article{AIF_1992__42_4_937_0, author = {Hashiguchi, N.}, title = {$PL$ representations of {Anosov} foliations}, journal = {Annales de l'Institut Fourier}, pages = {937--965}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {4}, year = {1992}, doi = {10.5802/aif.1316}, zbl = {0759.57018}, mrnumber = {93k:57058}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1316/} }
TY - JOUR AU - Hashiguchi, N. TI - $PL$ representations of Anosov foliations JO - Annales de l'Institut Fourier PY - 1992 SP - 937 EP - 965 VL - 42 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1316/ DO - 10.5802/aif.1316 LA - en ID - AIF_1992__42_4_937_0 ER -
Hashiguchi, N. $PL$ representations of Anosov foliations. Annales de l'Institut Fourier, Volume 42 (1992) no. 4, pp. 937-965. doi : 10.5802/aif.1316. https://aif.centre-mersenne.org/articles/10.5802/aif.1316/
[CN] Geometric Theory of Foliations, Birkhäuser, Boston, 1985. | Zbl
and ,[DS] Sur la nullité de l'invariant de Godbillon-Vey, C. R. Acad. Sci. Paris, 292 (1981), 821-824. | MR | Zbl
and ,[EM] Relations between Homology and Homotopy Groups of Spaces, Ann. of Math., 46 (1945), 480-509. | MR | Zbl
and ,[EHN] Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helvetici, 56 (1981), 638-660. | MR | Zbl
, and ,[F] Transitive Anosov Flows and Pseudo-Anosov Maps, Topology, 22 (1983), 299-303. | MR | Zbl
,[Gh] Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, 37, 4 (1987), 59-76. | Numdam | MR | Zbl
,[GS] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239. | MR | Zbl
and ,[Gr] Classifying spaces for foliations with isolated singularities, Trans. Amer. Math. Soc., 304 (1987), 417-429. | MR | Zbl
,[Ha1] On the Anosov diffeomorphisms corresponding to geodesic flows on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo, 37 (1990), 485-494. | MR | Zbl
,[Ha2] On the rigidity of PL representations of a surface group, preprint. | Zbl
,[He] Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Pub. Math., 49 (1978), 5-234. | Numdam | MR | Zbl
,[Ma] On Poincaré's theorem for fundamental polygons, Adv. in Math., 7 (1971), 219-230. | MR | Zbl
,[Mi] On the 3-dimensional Brieskorn manifold M (p, q, r), in Knots, Groups and 3-Manifolds, Ann. of Math. Studies, 84 (1975), 175-225, Princeton. | MR | Zbl
,[T] Area functionals and Godbillon-Vey cocycles, Ann. Inst. Fourier, 42, 1-2 (1992), 421-447. | Numdam | MR | Zbl
,Cited by Sources: