Soit une variété compacte orientée dont le bord contient un seul tore et soit un feuilletage taut (i.e. dont toute feuille coupe une transversale fermée) sur dont la restriction à a une composante de Reeb. Le principal résultat technique de ce papier dit que si est obtenue par chirurgie de Dehn sur le long de toute courbe parallèle à la composante de Reeb, alors admet un feuilletage taut.
Let be a compact oriented 3-manifold whose boundary contains a single torus and let be a taut foliation on whose restriction to has a Reeb component. The main technical result of the paper, asserts that if is obtained by Dehn filling along any curve not parallel to the Reeb component, then has a taut foliation.
@article{AIF_1992__42_1-2_193_0, author = {Gabai, David}, title = {Taut foliations of 3-manifolds and suspensions of $S^1$}, journal = {Annales de l'Institut Fourier}, pages = {193--208}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1289}, zbl = {0736.57010}, mrnumber = {93d:57028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1289/} }
TY - JOUR AU - Gabai, David TI - Taut foliations of 3-manifolds and suspensions of $S^1$ JO - Annales de l'Institut Fourier PY - 1992 SP - 193 EP - 208 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1289/ DO - 10.5802/aif.1289 LA - en ID - AIF_1992__42_1-2_193_0 ER -
%0 Journal Article %A Gabai, David %T Taut foliations of 3-manifolds and suspensions of $S^1$ %J Annales de l'Institut Fourier %D 1992 %P 193-208 %V 42 %N 1-2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1289/ %R 10.5802/aif.1289 %G en %F AIF_1992__42_1-2_193_0
Gabai, David. Taut foliations of 3-manifolds and suspensions of $S^1$. Annales de l'Institut Fourier, Tome 42 (1992) no. 1-2, pp. 193-208. doi : 10.5802/aif.1289. https://aif.centre-mersenne.org/articles/10.5802/aif.1289/
[B] The knots in D2 - S1 which have non trivial surgeries yielding D2 - S1, Top. and App., to appear.
,[Br] Essential laminations in Seifert fibered spaces, preprint. | Zbl
,[D] Sur les courbes définies par les équations différentielles à la surface du tore, J. de Math., 11 (1932). | JFM
,[F] Quasi-Fuchsian Seifert surfaces, preprint. | Zbl
,[FS] Constructing lens spaces from surgery on knots, Math. Zeitschrift, 175 (1980), 33-51. | MR | Zbl
& ,[GK] Pseudo-Anosov maps and surgery on fibred 2-bridge knots, Top. and App., 37 (1990), 93-100. | MR | Zbl
& ,[GM] Laminations and pseudo-Anosov flows transverse to finite depth foliations, in prep.
& ,[GO] Essential laminations in 3-manifolds, Ann. Math., 130 (1989), 41-73. | MR | Zbl
& ,[Ha] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 3 (1962), 367-397. | Numdam | MR | Zbl
,[HO] Personal communication.
& ,[M] Closed incompressible surfaces in alternating knot and link complements, Topology, 23 (1984), 225-246. | MR | Zbl
,[N] Topology of foliations, Trans. Mos. Math. Soc., 14 (1963), 268-305. | MR | Zbl
,[R] Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, IHES, 43 (1973), 101-142. | Numdam | Zbl
,[Ro] Foliations by planes, Topology, 6 (1967), 131-138. | Zbl
,[Sc] Producing reducible manifolds by surgery on a knot, Topology, 29 (1990), 481-500. | MR | Zbl
,[T] A norm for the homology of 3-manifolds, Memoirs AMS, 339 (1986), 99-139. | MR | Zbl
,[Ti] Totally parallelizable 3-manifolds, Topological dynamics, Auslander and Gottshalk eds. Benjamin (1968), 471-492. | MR | Zbl
,[W] Essential laminations in surgered manifolds, preprint. | Zbl
,Cité par Sources :