Let be a compact oriented 3-manifold whose boundary contains a single torus and let be a taut foliation on whose restriction to has a Reeb component. The main technical result of the paper, asserts that if is obtained by Dehn filling along any curve not parallel to the Reeb component, then has a taut foliation.
Soit une variété compacte orientée dont le bord contient un seul tore et soit un feuilletage taut (i.e. dont toute feuille coupe une transversale fermée) sur dont la restriction à a une composante de Reeb. Le principal résultat technique de ce papier dit que si est obtenue par chirurgie de Dehn sur le long de toute courbe parallèle à la composante de Reeb, alors admet un feuilletage taut.
@article{AIF_1992__42_1-2_193_0, author = {Gabai, David}, title = {Taut foliations of 3-manifolds and suspensions of $S^1$}, journal = {Annales de l'Institut Fourier}, pages = {193--208}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1289}, zbl = {0736.57010}, mrnumber = {93d:57028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1289/} }
TY - JOUR AU - Gabai, David TI - Taut foliations of 3-manifolds and suspensions of $S^1$ JO - Annales de l'Institut Fourier PY - 1992 SP - 193 EP - 208 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1289/ DO - 10.5802/aif.1289 LA - en ID - AIF_1992__42_1-2_193_0 ER -
%0 Journal Article %A Gabai, David %T Taut foliations of 3-manifolds and suspensions of $S^1$ %J Annales de l'Institut Fourier %D 1992 %P 193-208 %V 42 %N 1-2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1289/ %R 10.5802/aif.1289 %G en %F AIF_1992__42_1-2_193_0
Gabai, David. Taut foliations of 3-manifolds and suspensions of $S^1$. Annales de l'Institut Fourier, Volume 42 (1992) no. 1-2, pp. 193-208. doi : 10.5802/aif.1289. https://aif.centre-mersenne.org/articles/10.5802/aif.1289/
[B] The knots in D2 - S1 which have non trivial surgeries yielding D2 - S1, Top. and App., to appear.
,[Br] Essential laminations in Seifert fibered spaces, preprint. | Zbl
,[D] Sur les courbes définies par les équations différentielles à la surface du tore, J. de Math., 11 (1932). | JFM
,[F] Quasi-Fuchsian Seifert surfaces, preprint. | Zbl
,[FS] Constructing lens spaces from surgery on knots, Math. Zeitschrift, 175 (1980), 33-51. | MR | Zbl
& ,[GK] Pseudo-Anosov maps and surgery on fibred 2-bridge knots, Top. and App., 37 (1990), 93-100. | MR | Zbl
& ,[GM] Laminations and pseudo-Anosov flows transverse to finite depth foliations, in prep.
& ,[GO] Essential laminations in 3-manifolds, Ann. Math., 130 (1989), 41-73. | MR | Zbl
& ,[Ha] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 3 (1962), 367-397. | Numdam | MR | Zbl
,[HO] Personal communication.
& ,[M] Closed incompressible surfaces in alternating knot and link complements, Topology, 23 (1984), 225-246. | MR | Zbl
,[N] Topology of foliations, Trans. Mos. Math. Soc., 14 (1963), 268-305. | MR | Zbl
,[R] Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, IHES, 43 (1973), 101-142. | Numdam | Zbl
,[Ro] Foliations by planes, Topology, 6 (1967), 131-138. | Zbl
,[Sc] Producing reducible manifolds by surgery on a knot, Topology, 29 (1990), 481-500. | MR | Zbl
,[T] A norm for the homology of 3-manifolds, Memoirs AMS, 339 (1986), 99-139. | MR | Zbl
,[Ti] Totally parallelizable 3-manifolds, Topological dynamics, Auslander and Gottshalk eds. Benjamin (1968), 471-492. | MR | Zbl
,[W] Essential laminations in surgered manifolds, preprint. | Zbl
,Cited by Sources: