On détermine les points-base du système des courbes polaires d’une courbe algébroïde plane irréductible à modules généraux. On en tire une borne inférieure pour le nombre de Tjurina et plusieurs invariants analytiques continus de la courbe.
The base points of the system of polar curves of an irreducible algebroid plane curve with general moduli are determined. As consequences a lower bound for the Tjurina number and many continuous analytic invariants of the curve are found.
@article{AIF_1991__41_1_1_0, author = {Casas-Alvero, Eduardo}, title = {Base points of polar curves}, journal = {Annales de l'Institut Fourier}, pages = {1--10}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {1}, year = {1991}, doi = {10.5802/aif.1245}, zbl = {0707.14024}, mrnumber = {92f:14023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1245/} }
TY - JOUR AU - Casas-Alvero, Eduardo TI - Base points of polar curves JO - Annales de l'Institut Fourier PY - 1991 SP - 1 EP - 10 VL - 41 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1245/ DO - 10.5802/aif.1245 LA - en ID - AIF_1991__41_1_1_0 ER -
Casas-Alvero, Eduardo. Base points of polar curves. Annales de l'Institut Fourier, Tome 41 (1991) no. 1, pp. 1-10. doi : 10.5802/aif.1245. https://aif.centre-mersenne.org/articles/10.5802/aif.1245/
[1] Moduli of algebroid plane curves, Algebraic Geometry, La Rábida 1981, Lecture Notes in Math 961, Springer Verlag, 1982, 32-83. | MR | Zbl
,[2] Infinitely near singularities and singularities of polar curves, Math. Ann., 287 (1990), 429-454. | MR | Zbl
,[3] Teoria Geometrica delle Equazioni e delle Funzioni Algebriche, N. Zanichelli, Bologna, 1915.
, ,[4] Algebraic Curves, Oxford University Press, London, 1959. | MR | Zbl
, ,[5] Characterization of plane curves whose module of differentials has maximal torsion, Proc. Nat. Acad. of Science, U.S.A., 56,3 (1966), 781-786. | MR | Zbl
,[6] Le problème des modules pour les branches planes, Centre de Math., École Polytechnique, Paris, 1973. | MR | Zbl
,Cité par Sources :