Vectorial extensions of Jacobians
Annales de l'Institut Fourier, Volume 40 (1990) no. 4, pp. 769-783.

The universal vectorial extension of a curve is described in terms of the geometry of the curve.

L’extension universelle vectorielle d’une courbe est décrite en termes de la géométrie de la courbe.

@article{AIF_1990__40_4_769_0,
     author = {Coleman, Robert F.},
     title = {Vectorial extensions of {Jacobians}},
     journal = {Annales de l'Institut Fourier},
     pages = {769--783},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {4},
     year = {1990},
     doi = {10.5802/aif.1234},
     zbl = {0739.14016},
     mrnumber = {92e:14042},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1234/}
}
TY  - JOUR
AU  - Coleman, Robert F.
TI  - Vectorial extensions of Jacobians
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 769
EP  - 783
VL  - 40
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1234/
DO  - 10.5802/aif.1234
LA  - en
ID  - AIF_1990__40_4_769_0
ER  - 
%0 Journal Article
%A Coleman, Robert F.
%T Vectorial extensions of Jacobians
%J Annales de l'Institut Fourier
%D 1990
%P 769-783
%V 40
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1234/
%R 10.5802/aif.1234
%G en
%F AIF_1990__40_4_769_0
Coleman, Robert F. Vectorial extensions of Jacobians. Annales de l'Institut Fourier, Volume 40 (1990) no. 4, pp. 769-783. doi : 10.5802/aif.1234. https://aif.centre-mersenne.org/articles/10.5802/aif.1234/

[C1] R. Coleman, The Universal Vectorial Bi-extension and p-adic Heights, to appear in Inventiones. | Zbl

[C2] R. Coleman, Duality for the de Rham Cohomology of Abelian Schemes, to appear. | Numdam | Zbl

[CG] R. Coleman, and B. Gross, p-adic Heights on Curves, Advances in Math., 17 (1989), 73-81. | MR | Zbl

[C-C] C. Contou-Carrère, La jacobienne généralisée d'une courbe relative, C.R. Acad. Sci., Paris, t. 289 (279), 203-206. | MR | Zbl

[G] A. Grothendieck, Revêtement Étale et Groupe Fondamental (SGA I) SLN 224 (1971). | Zbl

[MaMe] B. Mazur and W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Springer Lecture Notes, 370, 1974. | MR | Zbl

[MaT] B. Mazur and J. Tate, Canonical Height Pairings via Bi-extensions, Arithmetic and Geometry, Vol. I, Birkhauser, (1983), 195-237. | MR | Zbl

[O] H. Onsiper, Rational Maps and Albanese Schemes, Thesis, University of California at Berkeley, (1984).

[S] J.-P. Serre, Groupes Algébriques et Corps de Classes, Hermann, 1959. | MR | Zbl

Cited by Sources: