Classification topologique des germes de formes logarithmiques génériques
Annales de l'Institut Fourier, Tome 39 (1989) no. 4, pp. 909-927.

On établit la classification topologique des feuilletages holomorphes de codimension 1 singuliers à l’origine de n , admettant une intégrale première multiforme du type f 1 1 ,...,f p p .

We give the topological classification of codimension one holomorphic foliations singular at the origin of n , which admits a multiform first integral of the type f 1 1 ,...,f p p .

@article{AIF_1989__39_4_909_0,
     author = {Paul, Emmanuel},
     title = {Classification topologique des germes de formes logarithmiques g\'en\'eriques},
     journal = {Annales de l'Institut Fourier},
     pages = {909--927},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {4},
     year = {1989},
     doi = {10.5802/aif.1194},
     zbl = {0678.32006},
     mrnumber = {91h:32027},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1194/}
}
TY  - JOUR
AU  - Paul, Emmanuel
TI  - Classification topologique des germes de formes logarithmiques génériques
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 909
EP  - 927
VL  - 39
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1194/
DO  - 10.5802/aif.1194
LA  - fr
ID  - AIF_1989__39_4_909_0
ER  - 
%0 Journal Article
%A Paul, Emmanuel
%T Classification topologique des germes de formes logarithmiques génériques
%J Annales de l'Institut Fourier
%D 1989
%P 909-927
%V 39
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1194/
%R 10.5802/aif.1194
%G fr
%F AIF_1989__39_4_909_0
Paul, Emmanuel. Classification topologique des germes de formes logarithmiques génériques. Annales de l'Institut Fourier, Tome 39 (1989) no. 4, pp. 909-927. doi : 10.5802/aif.1194. https://aif.centre-mersenne.org/articles/10.5802/aif.1194/

[1] C. Camacho, A. Lins Neto, The topology of integrable differentiable forms near a singularity, Publications Mathématiques de l'IHES, 55 (1982), 5-35. | Numdam | MR | Zbl

[2] D. Cerveau, J. F. Mattei, Formes intégrables holomorphes singulières, S.M.F., Astérisque, n° 97 (1982). | MR | Zbl

[3] Hamm, Lê Dung Trang, Un théorème de Zariski du type de Lefschetz, Ann. Sc. Ec. Norm. Sup., vol. 6 (1973), 317-366. | Numdam | MR | Zbl

[4] H. Hironaka, Introduction to the theory of infinitely near singular points, Memorias de Mathematica del Instituto Jorge Juan Madrid, 28 (1974). | MR | Zbl

[5] J. F. Mattei, R. Moussu, Holonomie et intégrales premières, Ann. Sc. Ec. Norm. Sup., 13 (1980), 469-523. | Numdam | MR | Zbl

[6] E. Paul, Étude topologique des formes logarithmiques fermées, Invent. Math., 95 (1989), 395-420. | MR | Zbl

[7] E. Paul, thèse, Toulouse (1987).

[8] J. Plante, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. | MR | Zbl

[9] S. Schwartzman, Asymptotic cycles, Ann. of Math., 66 (1957), 270-284. | MR | Zbl

[10] A. Seidenberg, Reduction of singularities of the differentiable equation A dy = B dx, Amer. J. of Math., (1968), 248-269. | MR | Zbl

[11] A. Van Den Essen, Reduction of singularities of the differentiable equation A dy + B dx = 0, Lectures notes in math., n° 712, 44-59, Springer-Verlag. | MR | Zbl

[12] C. Camacho, N. H. Kuiper, J. Palis, The topology of Holomorphic Flows with Singularity, Publications Mathématiques de l'IHES, 48 (1978), 5-38. | Numdam | MR | Zbl

Cité par Sources :