Irregularities of continuous distributions
Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 501-527.

Cet article considère un analogue de l’irrégularité des ensembles discrets. Si X est un espace compact et x:[0,1]X est une fonction continue (interprétée comme équation d’un mouvement), la discrépance mesure la différence entre le temps de séjour de x(t) dans certains sous-ensembles et le volume de ces sous-ensembles. Le but essentiel de cet article est de démontrer des estimations inférieures de la discrépance par une fonction de la longueur de l’arc de x(t), 0t1. De plus on démontre que les estimations sont optimales à des facteurs logarithmiques près.

This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction x:[0,1]X where X is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of x(t), 0t1. Furthermore it is shown that these estimates are the best possible despite of logarithmic factors.

@article{AIF_1989__39_3_501_0,
     author = {Drmota, Michael},
     title = {Irregularities of continuous distributions},
     journal = {Annales de l'Institut Fourier},
     pages = {501--527},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {3},
     year = {1989},
     doi = {10.5802/aif.1175},
     zbl = {0665.10036},
     mrnumber = {91b:11086},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1175/}
}
TY  - JOUR
AU  - Drmota, Michael
TI  - Irregularities of continuous distributions
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 501
EP  - 527
VL  - 39
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1175/
DO  - 10.5802/aif.1175
LA  - en
ID  - AIF_1989__39_3_501_0
ER  - 
%0 Journal Article
%A Drmota, Michael
%T Irregularities of continuous distributions
%J Annales de l'Institut Fourier
%D 1989
%P 501-527
%V 39
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1175/
%R 10.5802/aif.1175
%G en
%F AIF_1989__39_3_501_0
Drmota, Michael. Irregularities of continuous distributions. Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 501-527. doi : 10.5802/aif.1175. https://aif.centre-mersenne.org/articles/10.5802/aif.1175/

[1] J. Beck, On a problem of K.F. Roth concerning irregularities of point distribution, Invent. Math., 74 (1980), 477-487. | EuDML | MR | Zbl

[2] J. Beck and W. Chen, Irregularities of distribution, Cambridge University Press, Cambridge-New York, 1987. | MR | Zbl

[3] M. Drmota, An optimal lower bound for the discrepancy of C-uniformly distributed functions modulo 1, Indag. Math. (1), 50 (1988), 21-28. | MR | Zbl

[4] M. Drmota, Untere Schranken für die C-Diskrepanz, Österr. Akad. Wiss., Math. Naturw. K1. SB II, 196 (1987), 107-117. | MR | Zbl

[5] M. Drmota and R.F. Tichy, C-uniform distribution on compact metric spaces, J. Math. Analysis & Appl. (1), 129 (1988), 284-292. | MR | Zbl

[6] M. Drmota and R.F. Tichy, Distribution properties of continuous curves, in: Théorie des nombres, Comptes Rendus de la Conférence internationale de Théorie des nombres tenue à l'Université Laval en 1987 (J.M. De Koninck, C. Levesque eds.), de Gruyter, Berlin - New York, 1989, 117-127. | MR | Zbl

[7] E. Hlawka, Über C-Gleichverteilung, Ann. Mat. Pura Appl. (IV), 49 (1960), 311-366. | MR | Zbl

[8] K.F. Roth, On irregularities of distribution, Mathematika, 1 (1954), 73-79. | MR | Zbl

[9] W.M. Schmidt, Irregularities of distribution IV, Invent. Math., 7 (1969), 55-82. | EuDML | MR | Zbl

[10] R.J. Taschner, The discrepancy of C-uniformly distributed multidimensional functions, J. Math. Analysis and Appl. (2), 78 (1980), 400-404. | MR | Zbl

[11] R.F. Tichy, Konvexe Mengen auf speziellen Mannigfaltigkeiten, Proc. 3. Kolloquium über Diskrete Geometrie (1985), 263-275. | Zbl

Cité par Sources :