Le théorème de Schottky-Jung, qui a pour conséquence la relation de Schottky pour les fonctions theta, est prouvé pour des courbes de Mumford, c’est-à-dire, des courbes définies sur un corps non-archimédien qui sont paramétrisées par un groupe de Schottky.
The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.
@article{AIF_1989__39_1_1_0, author = {Steen, Guido Van}, title = {The {Schottky-Jung} theorem for {Mumford} curves}, journal = {Annales de l'Institut Fourier}, pages = {1--15}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {1}, year = {1989}, doi = {10.5802/aif.1155}, zbl = {0658.14015}, mrnumber = {90i:14023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1155/} }
TY - JOUR AU - Steen, Guido Van TI - The Schottky-Jung theorem for Mumford curves JO - Annales de l'Institut Fourier PY - 1989 SP - 1 EP - 15 VL - 39 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1155/ DO - 10.5802/aif.1155 LA - en ID - AIF_1989__39_1_1_0 ER -
Steen, Guido Van. The Schottky-Jung theorem for Mumford curves. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 1-15. doi : 10.5802/aif.1155. https://aif.centre-mersenne.org/articles/10.5802/aif.1155/
[1] Riemann surfaces, Graduate Texts in Mathematics, 71, Berlin, Heidelberg, New York, Springer-Verlag, 1980. | MR | Zbl
, ,[2] Periods and Gauss-Manin Connection for Families of p-adic Schottky Groups, Math. Ann., 275 (1986), 425-453. | EuDML | MR | Zbl
,[3] On Non-Archimedean Representations of Abelian Varieties, Math. Ann., 196, (1972) 323-346. | EuDML | MR | Zbl
,[4] Schottky Groups and Mumford Curves, Lecture Notes in Math., 817, Berlin, Heidelberg, New York, Springer-Verlag, 1980. | MR | Zbl
, ,[5] Nichtarchimedische Teichmüllerräume, Habitationsschrift, Bochum, Rühr Universität Bochum, 1975.
,[6] Prym varieties I. Contribution to Analysis, New York, Academic Press, 1974. | MR | Zbl
,[7] Familien von Schottky-Gruppen, Thesis, Bochum, Rühr Universität, 1986.
,[8] Etale Coverings of a Mumford Curve, Ann. Inst. Fourier, 33-1 (1983) 29-52. | EuDML | Numdam | MR | Zbl
,[9] Non-Archimedean Schottky Groups and Hyperelliptic Curves, Indag. Math., 45-1 (1983), 97-109. | MR | Zbl
,[10] Note on Coverings of the Projective Line by Mumford Curves, Bull. Belg. Wisk. Gen., Vol. 38, Fasc. 1, Series B, (1984), 31-38. | MR | Zbl
,[11] Prym Varieties for Mumford Curves, Proc. of the Conference on p-adic Analysis, Hengelhoef 1986, 197-207, Vrije Universiteit Brussel, 1987. | MR | Zbl
,Cité par Sources :