Compact, -foliated manifolds of codimension one, having all leaves proper, are shown to be -smoothable. More precisely, such a foliated manifold is homeomorphic to one of class . The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class and of class for every nonnegative integer .
Il a été prouvé que toutes les variétés feuilletées compactes de classe , de codimension 1, dont toutes les feuilles sont propres, sont de classe . Plus précisément, une telle variété feuilletée est homéomorphe à une variété de classe . En d’autres termes, le résultat n’est pas vrai pour un feuilletage à feuilles non-propres. Dans ce cas précis, il y a une différence du point de vue topologique entre les classes et , pour tout entier naturel .
@article{AIF_1988__38_3_219_0,
author = {Cantwell, John and Conlon, Lawrence},
title = {Smoothability of proper foliations},
journal = {Annales de l'Institut Fourier},
pages = {219--244},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {38},
number = {3},
year = {1988},
doi = {10.5802/aif.1146},
zbl = {0644.57013},
mrnumber = {90f:57034},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1146/}
}
TY - JOUR AU - Cantwell, John AU - Conlon, Lawrence TI - Smoothability of proper foliations JO - Annales de l'Institut Fourier PY - 1988 SP - 219 EP - 244 VL - 38 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1146/ DO - 10.5802/aif.1146 LA - en ID - AIF_1988__38_3_219_0 ER -
%0 Journal Article %A Cantwell, John %A Conlon, Lawrence %T Smoothability of proper foliations %J Annales de l'Institut Fourier %D 1988 %P 219-244 %V 38 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1146/ %R 10.5802/aif.1146 %G en %F AIF_1988__38_3_219_0
Cantwell, John; Conlon, Lawrence. Smoothability of proper foliations. Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 219-244. doi: 10.5802/aif.1146
[C.C1] and , Leaf prescriptions for closed 3-manifolds, Trans. Amer. Math. Soc., 236 (1978), 239-261. | Zbl | MR
[C.C2] and , Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc., 265 (1981), 181-209. | Zbl | MR
[C.C3] and , Nonexponential leaves at finite level, Trans. Amer. Math. Soc., 269 (1982), 637-661. | Zbl | MR
[C.C4] and , Smoothing fractional growth, Tôhoku Math. J., 33 (1981), 249-262. | Zbl | MR
[De] , Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375. | JFM
[Di] , Codimension one foliations of closed manifolds, Ann. of Math., 107 (1978), 403-453. | Zbl | MR
[E.M.S.] , and , Foliations with all leaves compact, Topology, 16 (1977), 13-32. | Zbl | MR
[E] , Periodic flows on 3-manifolds, Ann. of Math., 95 (1972), 68-92. | Zbl | MR
[F] , Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981. | Zbl | MR
[G] , Feuilletages, Études Géométriques II, Publ. Inst. de Recherche Math. Avancée, Univ. Louis Pasteur, Strasbourg, 1986. | Zbl
[Hae] , Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397. | Zbl | MR | Numdam
[Har1] , Unsmoothable diffeomorphisms, Ann. of Math., 102 (1975), 83-94. | Zbl | MR
[Har2] , Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc., 73 (1979), 249-255. | Zbl | MR
[H.H] and , Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983. | Zbl
[I] , On stability of proper leaves of codiménsion one foliations, J. Math. Soc. Japan, 29 (1977), 771-778. | Zbl | MR
[M] , Generic properties of proper foliations, I.H.E.S. preprint (1984).
[P] , Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. | Zbl | MR
[S.S.] and , Limit sets of foliations, Ann. Inst. Fourier, 15-2 (1965), 201-214. | Zbl | MR | Numdam
[T] , Examples of non-smoothable actions on the interval, Preprint (1986). | Zbl
[W] , Foliations on 3-manifolds, Ann. of Math., 89 (1969), 336-358. | Zbl | MR
Cité par Sources :



