We prove that if the sectional curvature, , of a compact 6-manifold without boundary satisfies then its third (real) Betti number is zero.
Nous démontrons que si la courbure sectionnelle d’une variété riemannienne compacte de dimension 6 satisfait à la condition alors son troisième (réel) nombre de Betti est nul.
@article{AIF_1986__36_2_83_0, author = {Seaman, Walter}, title = {The third {Betti} number of a positively pinched riemannian six manifold}, journal = {Annales de l'Institut Fourier}, pages = {83--92}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {2}, year = {1986}, doi = {10.5802/aif.1049}, zbl = {0578.53031}, mrnumber = {87k:53096}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1049/} }
TY - JOUR AU - Seaman, Walter TI - The third Betti number of a positively pinched riemannian six manifold JO - Annales de l'Institut Fourier PY - 1986 SP - 83 EP - 92 VL - 36 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1049/ DO - 10.5802/aif.1049 LA - en ID - AIF_1986__36_2_83_0 ER -
%0 Journal Article %A Seaman, Walter %T The third Betti number of a positively pinched riemannian six manifold %J Annales de l'Institut Fourier %D 1986 %P 83-92 %V 36 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1049/ %R 10.5802/aif.1049 %G en %F AIF_1986__36_2_83_0
Seaman, Walter. The third Betti number of a positively pinched riemannian six manifold. Annales de l'Institut Fourier, Volume 36 (1986) no. 2, pp. 83-92. doi : 10.5802/aif.1049. https://aif.centre-mersenne.org/articles/10.5802/aif.1049/
[1] An Infinite Family of Distinct 7-Manifolds Admitting Positively Curved Riemannian Metrics, Bull. A.M.S., 81 (1975), 93-97. | MR | Zbl
and ,[2] Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. Fr., 88 (1960), 57-71. | Numdam | MR | Zbl
,[3] Sur les variétés riemanniennes pincées just au-dessous de 1/4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 135-150. | Numdam | MR | Zbl
,[4] Calibrations on R6, Duke Math. J., 50 (1983), 1231-1243. | MR | Zbl
and ,[5] Curvature and Homology, Dover Publications, 1962, 1982. | Zbl
,[6] Le second nombre de Betti d'une variété riemannienne (1/4 - ε) - pincée de dimension 4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 167-182. | Numdam | MR | Zbl
,[7] The Exterior Algebra ΛkRn and Area Minimization, Linear Algebra and its Applications, 66 (1985), 1-28. | MR | Zbl
,[8] Differential Geometric Structures, McGraw Hill Book Co., 1981. | MR | Zbl
,[9] Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. Math., 96 (1972), 277-295. | MR | Zbl
,Cited by Sources: