The rational homotopy of Thom spaces and the smoothing of isolated singularities
Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 119-135.

On utilise les méthodes de l’homotopie rationnelle pour étudier le problème du lissage topologique des singularités algébriques complexes isolées. On montre que, dans toutes les situations, un revêtement convenable peut être lissé. On considère ensuite le problème du lissage topologique (la structure complexe normale y compris) pour les singularités coniques. On établit des liaisons entre l’existence de certaines relations entre les degrés de Chern normaux d’une variété projective lisse et la question de sa réalisation comme section linéaire (pas nécessairement hyperplane).

Rational homotopy methods are used for studying the problem of the topological smoothing of complex algebraic isolated singularities. It is shown that one may always find a suitable covering which is smoothable. The problem of the topological smoothing (including the complex normal structure) for conical singularities is considered in the sequel. A connection is established between the existence of certain relations between the normal Chern degrees of a smooth projective variety and the question of its realization as a linear section (not necessarily hyperplane).

@article{AIF_1985__35_3_119_0,
     author = {Papadima, Stefan},
     title = {The rational homotopy of {Thom} spaces and the smoothing of isolated singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {119--135},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {35},
     number = {3},
     year = {1985},
     doi = {10.5802/aif.1021},
     zbl = {0563.57010},
     mrnumber = {87b:55009},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1021/}
}
TY  - JOUR
AU  - Papadima, Stefan
TI  - The rational homotopy of Thom spaces and the smoothing of isolated singularities
JO  - Annales de l'Institut Fourier
PY  - 1985
SP  - 119
EP  - 135
VL  - 35
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1021/
DO  - 10.5802/aif.1021
LA  - en
ID  - AIF_1985__35_3_119_0
ER  - 
%0 Journal Article
%A Papadima, Stefan
%T The rational homotopy of Thom spaces and the smoothing of isolated singularities
%J Annales de l'Institut Fourier
%D 1985
%P 119-135
%V 35
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1021/
%R 10.5802/aif.1021
%G en
%F AIF_1985__35_3_119_0
Papadima, Stefan. The rational homotopy of Thom spaces and the smoothing of isolated singularities. Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 119-135. doi : 10.5802/aif.1021. https://aif.centre-mersenne.org/articles/10.5802/aif.1021/

[1] O. Burlet, Cobordismes de plongements et produits homotopiques, Comm. Math. Helv., 46 (1971), 277-288. | MR | Zbl

[2] Y. Felix, D. Tanre, Sur la formalité des applications, Publ. IRMA, Lille, 3-2 (1981).

[3] H. Hamm, On the vanishing of local homotopy groups for isolated singularities of complex spaces, Journal für die reine und ang. Math., 323 (1981), 172-176. | MR | Zbl

[4] R. Hartshorne, Topological conditions for smoothing algebraic singularities, Topology, 13 (1974), 241-253. | MR | Zbl

[5] R. Hartshorne, E. Rees, E. Thomas, Nonsmoothing of algebraic cycles on Grassmann varieties, BAMS, 80(5) (1974), 847-851. | MR | Zbl

[6] S. Halperin, J.D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math., 32 (1979), 233-279. | MR | Zbl

[7] M.L. Larsen, On the topology of complex projective manifolds, Inv. Math., 19 (1973), 251-260. | MR | Zbl

[8] J. Milnor, Singular points of complex hypersurfaces, Princeton University Press, 1968. | MR | Zbl

[9] S. Papadima, The rational homotopy of Thom spaces and the smoothing of homology classes, to appear Comm. Math. Helv. | Zbl

[10] E. Rees, E. Thomas, Cobordism obstructions to deforming isolated singularities, Math. Ann., 232 (1978), 33-53. | MR | Zbl

[11] H. Shiga, Notes on links of complex isolated singular points, Kodai Math. J., 3 (1980), 44-47. | MR | Zbl

[12] A.J. Sommese, Non-smoothable varieties, Comm. Math. Helv., 54 (1979), 140-146. | MR | Zbl

[13] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES, 47 (1977), 269-331. | Numdam | MR | Zbl

[14] R. Thom, Quelques propriétés globales des variétés différentiable, Comm. Math. Helv., 28 (1954), 17-86. | MR | Zbl

Cité par Sources :