Soit une surface projective lisse, le diviseur canonique, un diviseur très ample et l’espace des modules de fibrés vectoriels de rang deux -stables, de classes de Chern et . On démontre que s’il existe tel que est numériquement équivalent à et si est pair, au moins égal à , il n’y a pas de fibré de Poincaré sur . Par contre s’il existe tel que le nombre soit impair, ou bien si est impair, alors il y a un fibré de Poincaré sur .
Let be a smooth projective surface, the canonical divisor, a very ample divisor and the moduli space of rank-two vector bundles, -stable with Chern classes and . We prove that, if there exists such that is numerically equivalent to and if is even, greater or equal to , then there is no Poincaré bundle on . Conversely, if there exists such that the number is odd or if is odd, then there exists a Poincaré bundle on .
@article{AIF_1985__35_2_217_0, author = {Mestrano, Nicole}, title = {Poincar\'e bundles for projective surfaces}, journal = {Annales de l'Institut Fourier}, pages = {217--249}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {2}, year = {1985}, doi = {10.5802/aif.1015}, zbl = {0532.14005}, mrnumber = {87c:14019}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1015/} }
TY - JOUR AU - Mestrano, Nicole TI - Poincaré bundles for projective surfaces JO - Annales de l'Institut Fourier PY - 1985 SP - 217 EP - 249 VL - 35 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1015/ DO - 10.5802/aif.1015 LA - en ID - AIF_1985__35_2_217_0 ER -
Mestrano, Nicole. Poincaré bundles for projective surfaces. Annales de l'Institut Fourier, Tome 35 (1985) no. 2, pp. 217-249. doi : 10.5802/aif.1015. https://aif.centre-mersenne.org/articles/10.5802/aif.1015/
[1] Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977). | MR | Zbl
,[2] On the moduli space for stable rank-2 vector bundles on P2 (preprint Oslo). | Zbl
, ,[3] Algebraic geometry, Springer, 1977. | Zbl
,[4] Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176. | MR | Zbl
,[5] Fibrés de 't Hooft spéciaux et applications, Enumerative geometry and classical algebraic geometry, Progress in Math. (1982). | Zbl
, ,[6] Fibrés stables de rang deux sur P2(C), Math. Ann., 241 (1979), 217-256. | MR | Zbl
,[7] On a family of algebraic vector bundles, Number theory, Alg. Geo. and Com. Alg., Tokyo (1973). | MR | Zbl
,[8] Moduli of stable sheaves II, J. of Math. of Kyoto Univ., Vol. 18 (1978). | MR | Zbl
,[9] Elementary transformation in the theory of vector bundles, Lecture Notes, 961, Alg. Geo., Springer Verlag, 1981. | Zbl
,[10] Sections rationnelles de morphismes algébriques (preprint, Nice), 1983.
,[11] Poincaré bundles for families of curves (preprint, 1984). | Zbl
, ,[12] Vector bundles on curves in algebraic geometry, Bombay Colloquium, 1968. | Zbl
, ,[13] A non existence theorem for families of stable bundles, Jour. Lond. Math. Soc. | Zbl
,[14] The moduli space of vector bundles over an algebraic curve, Math. Ann., 200 (1973). | MR | Zbl
,[15] Vector bundles on algebraic surfaces, Proc. London Math. Soc., Vol. 11 (1961). | MR | Zbl
,[16] Stable vector bundles on algebraic surfaces, Nagoya Math. Jour., 47 (1972). | MR | Zbl
,Cité par Sources :