Nash blow-ups of jet schemes
Annales de l'Institut Fourier, Volume 69 (2019) no. 6, p. 2577-2588

Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow-up of a variety, such relative compactifications are shown to be given by the Nash blow-ups of the main components of the jet schemes.

Étant donné un morphisme birationnel projectif de variétés nous fournissons une manière explicite et naturelle de construire des compactifications relatives des applications induites sur les composantes principales des espaces de jets. Dans le cas où le morphisme est l’éclatement de Nash d’une variété, nous montrons que ces compactifications relatives sont données par les éclatements de Nash des composantes principales des espaces de jets.

Received : 2017-12-04
Revised : 2018-10-06
Accepted : 2019-01-17
Published online : 2019-10-29
DOI : https://doi.org/10.5802/aif.3302
Classification:  14E18,  14E04,  14B05
Keywords: Jet scheme, Nash blow-up, singularities, Grassmannian, functor of points
@article{AIF_2019__69_6_2577_0,
     author = {de Fernex, Tommaso and Docampo, Roi},
     title = {Nash blow-ups of jet schemes},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     pages = {2577-2588},
     doi = {10.5802/aif.3302},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2019__69_6_2577_0}
}
de Fernex, Tommaso; Docampo, Roi. Nash blow-ups of jet schemes. Annales de l'Institut Fourier, Volume 69 (2019) no. 6, pp. 2577-2588. doi : 10.5802/aif.3302. https://aif.centre-mersenne.org/item/AIF_2019__69_6_2577_0/

[1] Fernández De Bobadilla, Javier; Pereira, María Pe The Nash problem for surfaces, Ann. Math., Tome 176 (2012) no. 3, pp. 2003-2029 | Article | MR 2979864 | Zbl 1264.14049

[2] Ein, Lawrence; Mustaţă, Mircea Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2, American Mathematical Society (Proceedings of Symposia in Pure Mathematics) Tome 80 (2009), pp. 505-546 | Article | MR 2483946 | Zbl 1181.14019

[3] De Fernex, Tommaso; Docampo, Roi Terminal valuations and the Nash problem, Invent. Math., Tome 203 (2016) no. 1, pp. 303-331 | Article | MR 3437873 | Zbl 1345.14020

[4] De Fernex, Tommaso; Docampo, Roi Differentials on the arc space (2017) (to appear in Duke Math. J., https://arxiv.org/abs/1703.07505)

[5] Hironaka, Heisuke On Nash blowing-up, Arithmetic and geometry, Vol. II, Birkhäuser (Progress in Mathematics) Tome 36 (1983), pp. 103-111 | Article | MR 717608 | Zbl 0595.14006

[6] Ishii, Shihoko Smoothness and jet schemes, Singularities—Niigata–Toyama 2007, Mathematical Society of Japan (Advanced Studies in Pure Mathematics) Tome 56 (2009), pp. 187-199 | Article | MR 2604083 | Zbl 1207.14023

[7] Lejeune-Jalabert, Monique Arcs analytiques et résolution minimale des surfaces quasihomogènes, Séminaire sur les Singularités des Surfaces, Palaiseau, 1976–1977, Springer (Lecture Notes in Mathematics) Tome 777 (1980), pp. 303-332 | MR 579026 | Zbl 0432.14020

[8] Nash, John F. Jr. Arc structure of singularities, Duke Math. J., Tome 81 (1995) no. 1, pp. 31-38 | Article | MR 1381967 | Zbl 0880.14010

[9] Nobile, Anna Some properties of the Nash blowing-up, Pac. J. Math., Tome 60 (1975) no. 1, pp. 297-305 | Article | MR 0409462 | Zbl 0324.32012

[10] Oneto, Anna; Zatini, Elsa Remarks on Nash blowing-up, Rend. Sem. Mat. Univ. Politec. Torino, Tome 49 (1991) no. 1, pp. 71-82 | MR 1218672 | Zbl 0802.14001

[11] Reguera, Ana J. A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Tome 142 (2006) no. 1, pp. 119-130 | Article | MR 2197405

[12] Semple, John G. Some investigations in the geometry of curve and surface elements, Proc. Lond. Math. Soc., Tome 4 (1954), pp. 24-49 | Article | MR 0061406 | Zbl 0055.14505

[13] Spivakovsky, Mark Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math., Tome 131 (1990) no. 3, pp. 411-491 | Article | MR 1053487 | Zbl 0719.14005

[14] Vojta, Paul Jets via Hasse–Schmidt derivations, Diophantine geometry, Edizioni della Normale (CRM Series) Tome 4 (2007), pp. 335-361 | MR 2349665 | Zbl 1194.13027

[15] Yasuda, Takehiko Higher Nash blowups, Compos. Math., Tome 143 (2007) no. 6, pp. 1493-1510 | Article | MR 2371378 | Zbl 1135.14011