Nash blow-ups of jet schemes
[Éclatements de Nash des espaces de jets]
Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2577-2588.

Étant donné un morphisme birationnel projectif de variétés nous fournissons une manière explicite et naturelle de construire des compactifications relatives des applications induites sur les composantes principales des espaces de jets. Dans le cas où le morphisme est l’éclatement de Nash d’une variété, nous montrons que ces compactifications relatives sont données par les éclatements de Nash des composantes principales des espaces de jets.

Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow-up of a variety, such relative compactifications are shown to be given by the Nash blow-ups of the main components of the jet schemes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3302
Classification : 14E18, 14E04, 14B05
Keywords: Jet scheme, Nash blow-up, singularities, Grassmannian, functor of points
Mots-clés : Espace de jets, éclatement de Nash, singularités, Grassmanienne, foncteur de points

de Fernex, Tommaso 1 ; Docampo, Roi 2

1 Department of Mathematics University of Utah 155 South 1400 East Salt Lake City, UT 48112 (USA)
2 Department of Mathematics University of Oklahoma 601 Elm Avenue, Room 423 Norman, OK 73019 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_6_2577_0,
     author = {de Fernex, Tommaso and Docampo, Roi},
     title = {Nash blow-ups of jet schemes},
     journal = {Annales de l'Institut Fourier},
     pages = {2577--2588},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     doi = {10.5802/aif.3302},
     zbl = {1345.14020},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3302/}
}
TY  - JOUR
AU  - de Fernex, Tommaso
AU  - Docampo, Roi
TI  - Nash blow-ups of jet schemes
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2577
EP  - 2588
VL  - 69
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3302/
DO  - 10.5802/aif.3302
LA  - en
ID  - AIF_2019__69_6_2577_0
ER  - 
%0 Journal Article
%A de Fernex, Tommaso
%A Docampo, Roi
%T Nash blow-ups of jet schemes
%J Annales de l'Institut Fourier
%D 2019
%P 2577-2588
%V 69
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3302/
%R 10.5802/aif.3302
%G en
%F AIF_2019__69_6_2577_0
de Fernex, Tommaso; Docampo, Roi. Nash blow-ups of jet schemes. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2577-2588. doi : 10.5802/aif.3302. https://aif.centre-mersenne.org/articles/10.5802/aif.3302/

[1] Fernández de Bobadilla, Javier; Pereira, María Pe The Nash problem for surfaces, Ann. Math., Volume 176 (2012) no. 3, pp. 2003-2029 | DOI | MR | Zbl

[2] Ein, Lawrence; Mustaţă, Mircea Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 505-546 | DOI | MR | Zbl

[3] de Fernex, Tommaso; Docampo, Roi Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl

[4] de Fernex, Tommaso; Docampo, Roi Differentials on the arc space, 2017 (to appear in Duke Math. J., https://arxiv.org/abs/1703.07505) | Zbl

[5] Hironaka, Heisuke On Nash blowing-up, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 103-111 | DOI | MR | Zbl

[6] Ishii, Shihoko Smoothness and jet schemes, Singularities—Niigata–Toyama 2007 (Advanced Studies in Pure Mathematics), Volume 56, Mathematical Society of Japan, 2009, pp. 187-199 | DOI | MR | Zbl

[7] Lejeune-Jalabert, Monique Arcs analytiques et résolution minimale des surfaces quasihomogènes, Séminaire sur les Singularités des Surfaces, Palaiseau, 1976–1977 (Lecture Notes in Mathematics), Volume 777, Springer, 1980, pp. 303-332 | MR | Zbl

[8] Nash, John F. Jr. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 | DOI | MR | Zbl

[9] Nobile, Anna Some properties of the Nash blowing-up, Pac. J. Math., Volume 60 (1975) no. 1, pp. 297-305 | DOI | MR | Zbl

[10] Oneto, Anna; Zatini, Elsa Remarks on Nash blowing-up, Rend. Sem. Mat. Univ. Politec. Torino, Volume 49 (1991) no. 1, pp. 71-82 | MR | Zbl

[11] Reguera, Ana J. A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Volume 142 (2006) no. 1, pp. 119-130 | DOI | MR

[12] Semple, John G. Some investigations in the geometry of curve and surface elements, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 24-49 | DOI | MR | Zbl

[13] Spivakovsky, Mark Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math., Volume 131 (1990) no. 3, pp. 411-491 | DOI | MR | Zbl

[14] Vojta, Paul Jets via Hasse–Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Edizioni della Normale, 2007, pp. 335-361 | MR | Zbl

[15] Yasuda, Takehiko Higher Nash blowups, Compos. Math., Volume 143 (2007) no. 6, pp. 1493-1510 | DOI | MR | Zbl

Cité par Sources :