Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf
Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2329-2379.

Nous poursuivons l’étude d’un contrôle épars d’un opérateur singulier. Plus précisément nous expliquons comment on peut conserver certaines propriétés de l’opérateur initial à travers un tel contrôle et décrivons quelques applications : bornitude de l’adjoint de la transformée de Riesz et du projecteur de Leray. De plus, nous nous intéresserons à donner un regard nouveau sur les dominations éparses à travers les oscillations et les fonctions carrées localisées. Aussi, nous dévoilerons une connexion entre les bons intervalles de la décomposition éparse et une décomposition atomique.

We pursue the study of a sparse control for a singular operator. More precisely, we describe how one can track some properties of the initial operator, through such a control and describe also some applications: boundedness of the adjoint of a Riesz transform and of the Leray projector. Moreover, we will be interested in giving a new insight on the sparse domination through the oscillations and the localized square functions. Also, we will reveal a connection between the good intervals of the sparse domination and the atomic decomposition for a function in a Hardy space.

Reçu le : 2017-02-27
Révisé le : 2017-07-25
Accepté le : 2017-11-07
Publié le : 2018-11-23
DOI : https://doi.org/10.5802/aif.3211
Classification : 42B15,  42B25,  42B35
Mots clés: Opérateurs épars, poids, espaces de Hardy et BMO
@article{AIF_2018__68_6_2329_0,
     author = {Benea, Cristina and Bernicot, Fr\'ed\'eric},
     title = {Conservation de certaines propri\'et\'es \`a travers un contr\^ole \'epars d'un op\'erateur et applications au projecteur de Leray--Hopf},
     journal = {Annales de l'Institut Fourier},
     pages = {2329--2379},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {6},
     year = {2018},
     doi = {10.5802/aif.3211},
     language = {fr},
     url = {aif.centre-mersenne.org/item/AIF_2018__68_6_2329_0/}
}
Benea, Cristina; Bernicot, Frédéric. Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2329-2379. doi : 10.5802/aif.3211. https://aif.centre-mersenne.org/item/AIF_2018__68_6_2329_0/

[1] Auscher, Pascal On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on n and related estimates, Mem. Am. Math. Soc., Tome 186 (2007) no. 871, xviii+75 pages | Article | MR 2292385 | Zbl 1221.42022

[2] Auscher, Pascal On the Calderón-Zygmund lemma for Sobolev functions (2008) (http://arxiv.org/abs/0810.5029)

[3] Auscher, Pascal; Hofmann, Steve; Muscalu, Camil; Tao, Terence; Thiele, Christoph Carleson measures, trees, extrapolation, and T(b) theorems, Publ. Mat., Tome 46 (2002) no. 2, pp. 257-325 | Article | MR 1934198 | Zbl 1027.42009

[4] Auscher, Pascal; McIntosh, Alan; Russ, Emmanuel Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal., Tome 18 (2008) no. 1, pp. 192-248 | Article | MR 2365673 | Zbl 1217.42043

[5] Auscher, Pascal; Russ, Emmanuel Hardy spaces and divergence operators on strongly Lipschitz domains of n , J. Funct. Anal., Tome 201 (2003) no. 1, pp. 148-184 | Article | MR 1986158 | Zbl 1033.42019

[6] Barbatis, Gerassimos Stability of weighted Laplace-Beltrami operators under L p -perturbation of the Riemannian metric, J. Anal. Math., Tome 68 (1996), pp. 253-276 | Article | MR 1403258 | Zbl 0868.35025

[7] Benea, Cristina; Bernicot, Frédéric; Luque, Teresa Sparse bilinear forms for Bochner Riesz multipliers and applications, Trans. Lond. Math. Soc., Tome 4 (2017) no. 1, pp. 110-128 | MR 3653057 | Zbl 06873422

[8] Benea, Cristina; Muscalu, Camil Multiple vector-valued inequalities via the helicoidal method, Anal. PDE, Tome 9 (2016) no. 8, pp. 1931-1988 | Article | MR 3599522 | Zbl 1361.42005

[9] Bernicot, Frédéric; Frey, Dorothee; Petermichl, Stefanie Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Tome 9 (2016) no. 5, pp. 1079-1113 | Article | MR 3531367 | Zbl 1344.42009

[10] Bruna, Joaquim; Korenblum, Boris A note on Calderón-Zygmund singular integral convolution operators, Bull. Am. Math. Soc., Tome 16 (1987) no. 2, pp. 271-273 | Article | MR 876962 | Zbl 0617.42010

[11] Carleson, Lennart Interpolations by bounded analytic functions and the corona problem, Ann. Math., Tome 76 (1962), pp. 547-559 | Article | MR 0141789 | Zbl 0112.29702

[12] Coifman, Ronald R.; Meyer, Yves Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge Studies in Advanced Mathematics, Tome 48, Cambridge University Press, 1997, xix+314 pages | Zbl 0916.42023

[13] Conde-Alonso, José M.; Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng A sparse domination principle for rough singular integrals, Anal. PDE, Tome 10 (2017) no. 5, pp. 1255-1284 | Article | MR 3668591 | Zbl 06740746

[14] Coulhon, Thierry; Dungey, Nicholas Riesz transform and perturbation, J. Geom. Anal., Tome 17 (2007) no. 2, pp. 213-226 | Article | MR 2320162 | Zbl 1122.58014

[15] Cruz-Uribe, David; Martell, José María; Pérez, Carlos Sharp weighted estimates for classical operators, Adv. Math., Tome 229 (2012) no. 1, pp. 408-441 | Article | MR 2854179 | Zbl 1236.42010

[16] Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng Domination of multilinear singular integrals by positive sparse forms (2016) (http://arxiv.org/abs/1603.05317, to appear in J. Lond. Math. Soc.)

[17] Lacey, Michael An elementary proof of the A 2 Bound, Isr. J. Math., Tome 217 (2017), pp. 181-195 | Zbl 1368.42016

[18] Lee, Ming-Yi; Lin, Chin-Cheng The molecular characterization of weighted Hardy spaces, J. Funct. Anal., Tome 188 (2002) no. 2, pp. 442-460 | Article | MR 1883413 | Zbl 0998.42013

[19] Lee, Ming-Yi; Lin, Chin-Cheng; Lin, Ying-Chieh A wavelet characterization for the dual of weighted Hardy spaces, Proc. Am. Math. Soc., Tome 137 (2009) no. 12, pp. 4219-4225 | Article | MR 2538583 | Zbl 1181.42020

[20] Lee, Ming-Yi; Lin, Chin-Cheng; Yang, Wei-Chi H w p boundedness of Riesz transforms, J. Math. Anal. Appl., Tome 301 (2005) no. 2, pp. 394-400 | Article | MR 2105680 | Zbl 1083.42012

[21] Lerner, Andrei K. A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc., Tome 42 (2010) no. 5, pp. 843-856 | Zbl 1203.42023

[22] Lerner, Andrei K. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math., Tome 226 (2011) no. 5, pp. 3912-3926 | Article | MR 2770437 | Zbl 1226.42010

[23] Lerner, Andrei K. On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., Tome 121 (2013), pp. 141-161 | Zbl 1285.42015

[24] Lerner, Andrei K. A simple proof of the A 2 conjecture, Int. Math. Res. Not., Tome 14 (2013), pp. 3159-3170 | MR 3085756 | Zbl 1318.42018

[25] Lerner, Andrei K. On pointwise estimates involving sparse operators, New York J. Math., Tome 22 (2016), pp. 341-349 http://nyjm.albany.edu:8000/j/2016/22_341.html | MR 3484688 | Zbl 1347.42030

[26] Lerner, Andrei K.; Nazarov, Fedor Intuitive dyadic calculus: the basics (2015) (http://arxiv.org/abs/1508.05639, to appear in Expo. Math.)

[27] Meyer, Yves Ondelettes et opérateurs. II, Actualités Mathématiques., Hermann, 1990, p. i-xii and 217–384 (Opérateurs de Calderón-Zygmund.) | MR 1085488 | Zbl 0745.42011

[28] Muscalu, Camil; Schlag, Wilhem Classical and Multilinear Harmonic Analysis, Cambridge Studies in Advanced Mathematics, Tome 137, Cambridge University Press, 2013, xviii+370 pages | Zbl 1281.42002

[29] Muscalu, Camil; Tao, Terence; Thiele, Christoph L p estimates for the biest. I. The Walsh case, Math. Ann., Tome 329 (2004) no. 3, pp. 401-426 | Article | MR 2127984 | Zbl 1073.42009

[30] Neugebauer, Christoph J. Iterations of Hardy-Littlewood maximal functions, Proc. Am. Math. Soc., Tome 101 (1987) no. 2, pp. 272-276 | Article | MR 902540 | Zbl 0653.42019

[31] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Tome 43, Princeton University Press, 1993, xiv+695 pages (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR 1232192 | Zbl 0821.42001