[Résolutions libres génériques et systèmes de racines]
Dans ce papier je présente une construction explicite des anneaux génériques pour les résolutions libres de longueur 3 sur des -algèbres noethériennes commutatives. L’élément clé est l’algèbre de Lie de défaut introduite dans [18]. Il s’avère que l’algèbre de défaut est une sous-algèbre parabolique d’une algèbre de Kac–Moody associée au graphe correspondant au format de la résolution. L’anneau est noethérien si et seulement si le graphe correspondant à un format donné est un diagramme de Dynkin. Dans ce cas a des singularitées rationnelles donc il est de Cohen–Macaulay. L’anneau est une déformation d’un anneau commutatif qui possède une structure de module sans multiplicité sur un produit d’algèbres de Kac–Moody correspondant au graphe et un produit de deux algèbres de Lie linéaires générales.
In this paper I give an explicit construction of the generic rings for free resolutions of length 3 over Noetherian commutative -algebras. The key role is played by the defect Lie algebra introduced in [18]. The defect algebra turns out to be a parabolic subalgebra in a Kac–Moody Lie algebra associated to the graph corresponding to the format of the resolution. The ring is Noetherian if and only if the graph corresponding to a given format is a Dynkin diagram. In such case has rational singularities so it is Cohen–Macaulay. The ring is a deformation of a commutative ring which has a structure of a multiplicity free module over a product of Kac–Moody Lie algebras corresponding to the graph and a product of two general linear Lie algebras.
Accepté le :
Publié le :
Keywords: Finite free resolutions, structure theorems, Kac–Moody Lie algebras
Mots-clés : Résolutions libres finies, théorèmes de structure, algèbres de Kac–Moody et Lie
Weyman, Jerzy 1
@article{AIF_2018__68_3_1241_0, author = {Weyman, Jerzy}, title = {Generic free resolutions and root systems}, journal = {Annales de l'Institut Fourier}, pages = {1241--1296}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {3}, year = {2018}, doi = {10.5802/aif.3188}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3188/} }
TY - JOUR AU - Weyman, Jerzy TI - Generic free resolutions and root systems JO - Annales de l'Institut Fourier PY - 2018 SP - 1241 EP - 1296 VL - 68 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3188/ DO - 10.5802/aif.3188 LA - en ID - AIF_2018__68_3_1241_0 ER -
%0 Journal Article %A Weyman, Jerzy %T Generic free resolutions and root systems %J Annales de l'Institut Fourier %D 2018 %P 1241-1296 %V 68 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3188/ %R 10.5802/aif.3188 %G en %F AIF_2018__68_3_1241_0
Weyman, Jerzy. Generic free resolutions and root systems. Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1241-1296. doi : 10.5802/aif.3188. https://aif.centre-mersenne.org/articles/10.5802/aif.3188/
[1] The existence of generic free resolutions and related objects, Math. Scand., Volume 55 (1984), pp. 33-46 | DOI | Zbl
[2] What makes a complex exact, J. Algebra, Volume 25 (1973), pp. 259-268 | DOI | Zbl
[3] Some structure theorems for finite free resolutions, Adv. Math., Volume 1 (1974), pp. 84-139 | DOI | Zbl
[4] Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Am. J. Math., Volume 99 (1977) no. 3, pp. 447-485 | DOI | Zbl
[5] On the variety of complexes, Adv. Math., Volume 41 (1981), pp. 45-77 | DOI | Zbl
[6] Singularités rationnelles et déformations, Invent. Math., Volume 47 (1977), pp. 139-147 | DOI | Zbl
[7] Lie algebra homology and the Macdonald-Kac formulas, Invent. Math., Volume 34 (1976), pp. 37-76 | DOI | Zbl
[8] Algebraic homogeneous spaces and invariant theory, Lecture Notes in Math., 1673, Springer, Berlin, 1997, vi+148 pages | Zbl
[9] Topics in the homological theory of modules over commutative rings, CBMS Regional Conference Series in Mathematics, 24, American Mathematical Society, 1975 | Zbl
[10] Infinite Dimensional Lie algebras, Cambridge University Press, 1993, xxi+400 pages | Zbl
[11] The Grothendieck-Cousin complex of an induced representation, Adv. Math., Volume 29 (1978), pp. 310-396 | DOI | Zbl
[12] Kac-Moody groups, their flag varieties and Representation Theory, Progress in Mathematics, 204, Birkhäuser, Boston, 2002 | Zbl
[13] Kostant’s formula for Kac-Moody Lie algebras, J. Algebra, Volume 149 (1992) no. 1, pp. 155-178 | DOI | Zbl
[14] Finite free resolutions, Cambridge Tracts in Mathematics, 71, Cambridge University Press, Cambridge, UK, 1976 | Zbl
[15] On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014), pp. 171-223 | DOI | Zbl
[16] On the generic free resolutions, J. Algebra, Volume 128 (1990) no. 1, pp. 1-44 | DOI | Zbl
[17] Universal Complexes and the Generic Structure of Free Resolutions, Mich. Math. J., Volume 49 (2001), pp. 65-96 | DOI | Zbl
[18] On the structure of resolutions of length 3, J. Algebra, Volume 126 (1989) no. 1, pp. 1-33 | DOI | Zbl
Cité par Sources :