Maximal surfaces in anti-de Sitter 3-manifolds with particles
Annales de l'Institut Fourier, Volume 66 (2016) no. 4, p. 1409-1449
We prove the existence of a unique maximal surface in each anti-de Sitter (AdS) Globally Hyperbolic Maximal (GHM) manifold with particles (that is, with conical singularities along time-like lines) for cone angles less than π. We interpret this result in terms of Teichmüller theory, and prove the existence of a unique minimal Lagrangian diffeomorphism isotopic to the identity between two hyperbolic surfaces with cone singularities when the cone angles are the same for both surfaces and are less than π.
On démontre l’existence d’une unique surface maximale dans les variétés anti-de Sitter (AdS) globalement hyperboliques maximales (GHM) à particules (c’est à dire, avec des singularités coniques le long de courbes de type temps) lorsque les angles sont inférieurs à π. On interprète ce résultat en termes de théorie de Teichmüller et nous démontrons l’existence d’un unique difféomorphisme minimal lagrangien isotope à l’identité entre deux surfaces hyperboliques à singularités coniques, lorsque les angles singuliers sont les mêmes pour les deux surfaces et sont inférieurs à π.
Received : 2014-05-05
Revised : 2015-09-18
Accepted : 2015-11-15
Published online : 2016-07-28
Classification:  53C42,  53C50
Keywords: maximal surfaces, cone-manifolds, Lorentz geometry, minimal Lagrangian maps
@article{AIF_2016__66_4_1409_0,
     author = {Toulisse, J\'er\'emy},
     title = {Maximal surfaces in anti-de Sitter 3-manifolds with particles},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     pages = {1409-1449},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2016__66_4_1409_0}
}
Maximal surfaces in anti-de Sitter 3-manifolds with particles. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1409-1449. https://aif.centre-mersenne.org/item/AIF_2016__66_4_1409_0/

[1] Aiyama, R.; Akutagawa, K.; Wan, T. Y. H. Minimal maps between the hyperbolic discs and generalized Gauss maps of maximal surfaces in the anti-de Sitter 3-space, Tohoku Math. J. (2), Tome 52 (2000) no. 3, pp. 415-429 | Article

[2] Andersson, L.; Barbot, T.; Béguin, F.; Zeghib, A. Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Tome 16 (2012) no. 1, pp. 37-87 | Article

[3] Barbot, T.; Bonsante, F.; Danciger, J.; Goldman, W.M.; Guéritaud, F.; Kassel, F.; Krasnov, K.; Schlenker, J.-M.; Zeghib, A. Some open questions on Anti-de Sitter geometry (2012) (http://arxiv.org/abs/1205.6103 )

[4] Barbot, Thierry; Béguin, François; Zeghib, Abdelghani Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS 3 , Geom. Dedicata, Tome 126 (2007), pp. 71-129 | Article

[5] Bers, L. Simultaneous uniformization, Bull. Amer. Math. Soc., Tome 66 (1960), pp. 94-97

[6] Bonsante, F.; Schlenker, J.-M. AdS manifolds with particles and earthquakes on singular surfaces, Geom. Funct. Anal., Tome 19 (2009) no. 1, pp. 41-82 | Article

[7] Choquet-Bruhat, Yvonne; Geroch, Robert Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., Tome 14 (1969), pp. 329-335

[8] Eells, J. J.; Sampson, J. H. Harmonic mappings of Riemannian manifolds, Amer. J. Math., Tome 86 (1964), pp. 109-160

[9] Gell-Redman, J. Harmonic maps of conic surfaces with cone angles less than 2π, Comm. Anal. Geom., Tome 23 (2015) no. 4, pp. 717-796 | Article

[10] Gerhardt, C. H-surfaces in Lorentzian manifolds, Comm. Math. Phys., Tome 89 (1983) no. 4, pp. 523-553 http://projecteuclid.org/getRecord?id=euclid.cmp/1103922929

[11] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Classics in Mathematics (2001), xiv+517 pages (Reprint of the 1998 edition)

[12] Goldman, William M. Topological components of spaces of representations, Invent. Math., Tome 93 (1988) no. 3, pp. 557-607 | Article

[13] Hopf, H. Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr., Tome 4 (1951), pp. 232-249

[14] Jeffres, T. D; Mazzeo, R.; Rubinstein, Y. A Kähler-Einstein metrics with edge singularities (2011) (http://arxiv.org/abs/1105.5216 )

[15] Krasnov, K.; Schlenker, J.-M. Minimal surfaces and particles in 3-manifolds, Geom. Dedicata, Tome 126 (2007), pp. 187-254 | Article

[16] Labourie, F. Surfaces convexes dans l’espace hyperbolique et ℂℙ 1 -structures, J. London Math. Soc. (2), Tome 45 (1992) no. 3, pp. 549-565 | Article

[17] Lecuire, C.; Schlenker, J.-M. The convex core of quasifuchsian manifolds with particles, Geom. Topol., Tome 18 (2014) no. 4, pp. 2309-2373 | Article

[18] Mazzeo, R.; Rubinstein, Y. A.; Sesum, N. Ricci flow on surfaces with conic singularities, Anal. PDE, Tome 8 (2015) no. 4, pp. 839-882 | Article

[19] Mcowen, R. C. Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc., Tome 103 (1988) no. 1, pp. 222-224 | Article

[20] Mess, G. Lorentz spacetimes of constant curvature, Geom. Dedicata, Tome 126 (2007), pp. 3-45 | Article

[21] Moroianu, S.; Schlenker, J.-M. Quasi-Fuchsian manifolds with particles, J. Differential Geom., Tome 83 (2009) no. 1, pp. 75-129 http://projecteuclid.org/getRecord?id=euclid.jdg/1253804352

[22] Schlenker, J.-M. Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom., Tome 48 (1998) no. 2, pp. 323-405 http://projecteuclid.org/getRecord?id=euclid.jdg/1214460799

[23] Schoen, Richard M. The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990), Dekker, New York (Lecture Notes in Pure and Appl. Math.) Tome 143 (1993), pp. 179-200

[24] Toulisse, J. Minimal diffeomorphism between hyperbolic surfaces with cone singularities (2014) (http://arxiv.org/abs/1411.2656v1 )

[25] Troyanov, M. Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., Tome 324 (1991) no. 2, pp. 793-821 | Article