Codimension two index obstructions to positive scalar curvature
Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2681-2710.

We derive a general obstruction to the existence of Riemannian metrics of positive scalar curvature on closed spin manifolds in terms of hypersurfaces of codimension two. The proof is based on coarse index theory for Dirac operators that are twisted with Hilbert C * -module bundles.

Along the way we give a complete and self-contained proof that the minimal closure of a Dirac type operator twisted with a Hilbert C * -module bundle on a complete Riemannian manifold is a regular and self-adjoint operator on the Hilbert C * -module of L 2 -sections of this bundle.

Moreover, we give a new proof of Roe’s vanishing theorem for the coarse index of the Dirac operator on a complete non-compact Riemannian manifold whose scalar curvature is uniformly positive outside of a compact subset. This proof immediately generalizes to Dirac operators twisted with flat Hilbert C * -module bundles.

Nous dérivons une obstruction générale à l’existence d’une métrique à courbure scalaire positive sur une variété compacte spin, qui est basée sur des sous-variétés de codimension deux. La preuve utilise la théorie d’indice grossier (synonymement “indice a grande échelle”) pour l’opérateur de Dirac tordu par un fibré de C * -modules Hilbertiens.

En cours de route nous donnons une preuve complète et indépendant du fait que la clôture minimale d’un opérateur de type Dirac sur une variété complète, tordu par un fibré de C * -modules Hilbertiens, est régulière et auto-adjointe comme operateur non-borné sur le C * -module Hilbertien des sections L 2 -intégrables de ce fibré.

En outre, nous donnons une preuve nouvelle du théorème de Roe affirmant que l’indice grossier de l’opérateur de Dirac est nul pour une variété Riemannienne complète non-compacte avec courbure scalaire uniformement positive en dehors d’un sous-ensemble compact. Notre preuve se généralise immédiatement aux operateurs de Dirac tordu par un fibré plat de C * -modules Hilbertiens.

DOI: 10.5802/aif.3000
Classification: 46L80,  19K56,  19L64,  53C20,  58J22,  53C27
Keywords: index theory, positive scalar curvature, codimension 2, hypersurface, Mishchenko-Fomenko index, large scale geometry, coarse geometry, large scale index theory, coarse index theory
Hanke, Bernhard 1; Pape, Daniel 2; Schick, Thomas 2

1 Universität Augsburg Universitätsstr. 14 86159 Augsburg (Germany)
2 Georg-August-Universität Göttingen Mathematisches Institut Bunsenstr. 3 37073 Göttingen (Germany)
@article{AIF_2015__65_6_2681_0,
     author = {Hanke, Bernhard and Pape, Daniel and Schick, Thomas},
     title = {Codimension two index obstructions to positive scalar curvature},
     journal = {Annales de l'Institut Fourier},
     pages = {2681--2710},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {6},
     year = {2015},
     doi = {10.5802/aif.3000},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3000/}
}
TY  - JOUR
AU  - Hanke, Bernhard
AU  - Pape, Daniel
AU  - Schick, Thomas
TI  - Codimension two index obstructions to positive scalar curvature
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 2681
EP  - 2710
VL  - 65
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3000/
UR  - https://doi.org/10.5802/aif.3000
DO  - 10.5802/aif.3000
LA  - en
ID  - AIF_2015__65_6_2681_0
ER  - 
%0 Journal Article
%A Hanke, Bernhard
%A Pape, Daniel
%A Schick, Thomas
%T Codimension two index obstructions to positive scalar curvature
%J Annales de l'Institut Fourier
%D 2015
%P 2681-2710
%V 65
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3000
%R 10.5802/aif.3000
%G en
%F AIF_2015__65_6_2681_0
Hanke, Bernhard; Pape, Daniel; Schick, Thomas. Codimension two index obstructions to positive scalar curvature. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2681-2710. doi : 10.5802/aif.3000. https://aif.centre-mersenne.org/articles/10.5802/aif.3000/

[1] Abramowitz, Milton; Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, pp. xiv+1046 | MR | Zbl

[2] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques Riemannian geometry, Universitext, Springer-Verlag, Berlin, 2004, pp. xvi+322 | DOI | MR | Zbl

[3] Ginoux, Nicolas The Dirac spectrum, Lecture Notes in Mathematics, 1976, Springer-Verlag, Berlin, 2009, pp. xvi+156 | DOI | MR | Zbl

[4] Gromov, Mikhael; Lawson, H. Blaine Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983) no. 58, p. 83-196 (1984) | Numdam | MR | Zbl

[5] Hanke, B.; Schick, T. Enlargeability and index theory, J. Differential Geom., Volume 74 (2006) no. 2, pp. 293-320 http://projecteuclid.org/euclid.jdg/1175266206 | MR | Zbl

[6] Hanke, Bernhard; Kotschick, Dieter; Roe, John; Schick, Thomas Coarse topology, enlargeability, and essentialness, Ann. Sci. Éc. Norm. Supér. (4), Volume 41 (2008) no. 3, pp. 471-493 | Numdam | MR | Zbl

[7] Hanke, Bernhard; Schick, Thomas Enlargeability and index theory: infinite covers, K-Theory, Volume 38 (2007) no. 1, pp. 23-33 | DOI | MR | Zbl

[8] Higson, Nigel; Pedersen, Erik Kjær; Roe, John C * -algebras and controlled topology, K-Theory, Volume 11 (1997) no. 3, pp. 209-239 | DOI | MR | Zbl

[9] Higson, Nigel; Roe, John Analytic K -homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000, pp. xviii+405 (Oxford Science Publications) | MR | Zbl

[10] Higson, Nigel; Roe, John; Yu, Guoliang A coarse Mayer-Vietoris principle, Math. Proc. Cambridge Philos. Soc., Volume 114 (1993) no. 1, pp. 85-97 | DOI | MR | Zbl

[11] Hilsum, Michel; Skandalis, Georges Invariance par homotopie de la signature à coefficients dans un fibré presque plat, J. Reine Angew. Math., Volume 423 (1992), pp. 73-99 | DOI | MR | Zbl

[12] Kucerovsky, Dan Functional calculus and representations of C 0 () on a Hilbert module, Q. J. Math., Volume 53 (2002) no. 4, pp. 467-477 | DOI | MR | Zbl

[13] Lance, E. C. Hilbert C * -modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995, pp. x+130 (A toolkit for operator algebraists) | DOI | MR | Zbl

[14] Lawson, H. Blaine Jr.; Michelsohn, Marie-Louise Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989, pp. xii+427 | MR | Zbl

[15] Miščenko, A. S.; Fomenko, A. T. The index of elliptic operators over C * -algebras, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979) no. 4, p. 831-859, 967 | MR | Zbl

[16] Pape, Daniel Index theory and positive scalar curvature, Georg-August-Universität Göttingen (2011) (Ph. D. Thesis) | Zbl

[17] Piazza, Paolo; Schick, Thomas Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol., Volume 7 (2014) no. 4, pp. 965-1004 | MR

[18] Roe, John Positive curvature, partial vanishing theorems, and coarse indices (http://arxiv.org/abs/1210.6100)

[19] Roe, John Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc., Volume 104 (1993) no. 497, pp. x+90 | DOI | MR | Zbl

[20] Roe, John Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996, pp. x+100 | MR | Zbl

[21] Roe, John Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, 395, Longman, Harlow, 1998, pp. ii+209 | MR | Zbl

[22] Rosenberg, J. C * -algebras, positive scalar curvature and the Novikov conjecture. II, Geometric methods in operator algebras (Kyoto, 1983) (Pitman Res. Notes Math. Ser.), Volume 123, Longman Sci. Tech., Harlow, 1986, pp. 341-374 | MR | Zbl

[23] Rosenberg, Jonathan C * -algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983) no. 58, p. 197-212 (1984) | MR | Zbl

[24] Rosenberg, Jonathan C * -algebras, positive scalar curvature, and the Novikov conjecture. III, Topology, Volume 25 (1986) no. 3, pp. 319-336 | DOI | MR | Zbl

[25] Rosenberg, Jonathan; Stolz, Stephan Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory, Vol. 2 (Ann. of Math. Stud.), Volume 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 353-386 | MR | Zbl

[26] Rosenberg, Jonathan; Weinberger, Shmuel Higher G-signatures for Lipschitz manifolds, K-Theory, Volume 7 (1993) no. 2, pp. 101-132 | DOI | MR | Zbl

[27] Schick, Thomas A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology, Volume 37 (1998) no. 6, pp. 1165-1168 | DOI | MR | Zbl

[28] Schick, Thomas; Zadeh, Mostafa Esfahani Large scale index of multi-partitioned manifolds (http://arxiv.org/abs/1308.0742, to appear in Journal of Non-Commutative Geometry)

[29] Schoen, R.; Yau, S. T. On the structure of manifolds with positive scalar curvature, Manuscripta Math., Volume 28 (1979) no. 1-3, pp. 159-183 | DOI | MR | Zbl

[30] Schrödinger, Erwin Diracsches Elektron im Schwerefeld. I., Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. (1932) no. 11-12, pp. 105-128 | Zbl

[31] Stolz, Stephan Positive scalar curvature metrics—existence and classification questions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 625-636 | MR | Zbl

[32] Stolz, Stephan Manifolds of positive scalar curvature, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001) (ICTP Lect. Notes), Volume 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 661-709 | MR | Zbl

[33] Vassout, Stéphane Feuilletages et résidu non commutatif longitudinal, Université Pierre et Marie Curie – Paris VI (2001) (Ph. D. Thesis)

[34] Yu, Guoliang K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra, K-Theory, Volume 11 (1997) no. 1, pp. 1-15 | DOI | MR | Zbl

[35] Zadeh, Mostafa Esfahani Index theory and partitioning by enlargeable hypersurfaces, J. Noncommut. Geom., Volume 4 (2010) no. 3, pp. 459-473 | DOI | MR | Zbl

[36] Zadeh, Mostafa Esfahani A note on some classical results of Gromov-Lawson, Proc. Amer. Math. Soc., Volume 140 (2012) no. 10, pp. 3663-3672 | DOI | MR

Cited by Sources: