Invertible polynomial mappings via Newton non-degeneracy  [ Applications polynomiales inversibles et non-dégénérescence des polyèdres de Newton ]
Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 1807-1822.

On démontre une condition suffisante pour le problème Jacobien dans le contexte des applications polynomiales réelles, complexes ou mixtes. Ceci résulte de l’étude de l’ensemble de bifurcation d’une application soumise à une nouvelle condition de non-dégénérescence par rapport aux polyèdres de Newton à l’infini.

We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

Reçu le : 2013-03-27
Accepté le : 2013-07-05
DOI : https://doi.org/10.5802/aif.2897
Classification : 14D06,  58K05,  57R45,  14P10,  32S20,  58K15
Mots clés: applications polynomiales réelles ou complexes, ensemble de bifurcation, problème Jacobien, polyèdre de Newton, regularité à l’infini
@article{AIF_2014__64_5_1807_0,
     author = {Chen, Ying and Dias, Luis Renato G. and Takeuchi, Kiyoshi and Tib\u ar, Mihai},
     title = {Invertible polynomial mappings via Newton non-degeneracy},
     journal = {Annales de l'Institut Fourier},
     pages = {1807--1822},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {5},
     year = {2014},
     doi = {10.5802/aif.2897},
     zbl = {06387324},
     mrnumber = {3330924},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2014__64_5_1807_0/}
}
Chen, Ying; Dias, Luis Renato G.; Takeuchi, Kiyoshi; Tibăr, Mihai. Invertible polynomial mappings via Newton non-degeneracy. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 1807-1822. doi : 10.5802/aif.2897. https://aif.centre-mersenne.org/item/AIF_2014__64_5_1807_0/

[1] Białynicki-Birula, Andrzej; Rosenlicht, Maxwell Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., Tome 13 (1962), pp. 200-203 | Article | MR 140516 | Zbl 0107.14602

[2] Bivià-Ausina, Carles Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z., Tome 257 (2007) no. 4, pp. 745-767 | Article | MR 2342551 | Zbl 1183.14076

[3] Broughton, S. A. On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.) Tome 40, Amer. Math. Soc., Providence, RI, 1983, pp. 167-178 | MR 713056 | Zbl 0526.14010

[4] Broughton, S. A. Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., Tome 92 (1988) no. 2, pp. 217-241 | Article | MR 936081 | Zbl 0658.32005

[5] Chen, Ying; Dias, L. R. G.; Tibăr, M. On Newton non-degeneracy of polynomial mappings (arXiv:1207.1612)

[6] Chen, Ying; Tibăr, Mihai Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., Tome 19 (2012) no. 1, pp. 59-79 | Article | MR 2923176 | Zbl 1274.14006

[7] Cynk, Sławomir; Rusek, Kamil Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math., Tome 56 (1991) no. 1, pp. 29-35 | MR 1145567 | Zbl 0761.14005

[8] Dias, L. R. G.; Ruas, M. A. S.; Tibăr, M. Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., Tome 5 (2012) no. 2, pp. 323-340 | Article | MR 2928079 | Zbl 1248.14014

[9] Durfee, Alan H. Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996) (Progr. Math.) Tome 162, Birkhäuser, Basel, 1998, pp. 345-360 | MR 1652481 | Zbl 0919.32021

[10] van den Essen, Arno Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, Tome 190, Birkhäuser Verlag, Basel, 2000, xviii+329 pages | Article | Zbl 0962.14037

[11] Esterov, Alexander; Takeuchi, Kiyoshi Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012) no. 15, pp. 3567-3613 | Article | MR 2959042 | Zbl 1250.32025

[12] Gaffney, Terence Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math., Tome 119 (1999) no. 2, pp. 157-167 | Article | MR 1723126 | Zbl 0945.32013

[13] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, 259 pages | | Numdam | MR 219538 | Zbl 0135.39701

[14] Hà, H. V.; Lê, D. T. Sur la topologie des polynômes complexes, Acta Math. Vietnam, Tome 9 (1984) no. 1, pp. 21-32 | Zbl 0597.32005

[15] Jelonek, Zbigniew Testing sets for properness of polynomial mappings, Math. Ann., Tome 315 (1999) no. 1, pp. 1-35 | Article | MR 1717542 | Zbl 0946.14039

[16] Jelonek, Zbigniew On asymptotic critical values and the Rabier theorem, Geometric singularity theory (Banach Center Publ.) Tome 65, Polish Acad. Sci., Warsaw, 2004, pp. 125-133 | Article | MR 2104342 | Zbl 1160.58311

[17] Kurdyka, K.; Orro, P.; Simon, S. Semialgebraic Sard theorem for generalized critical values, J. Differential Geom., Tome 56 (2000) no. 1, pp. 67-92 http://projecteuclid.org/getRecord?id=euclid.jdg/1090347525 | MR 1863021 | Zbl 1067.58031

[18] Kushnirenko, A. Polyèdres de Newton et nombres de Milnor, Invent. Math., Tome 32 (1976), pp. 1-31 | Article | | Zbl 0328.32007

[19] Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Tome 268 (2011) no. 1-2, pp. 409-439 | Article | MR 2805442 | Zbl 1264.14005

[20] Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Tome 26 (1990) no. 4, pp. 681-689 | Article | MR 1081511 | Zbl 0736.32024

[21] Némethi, András; Zaharia, Alexandru Milnor fibration at infinity, Indag. Math. (N.S.), Tome 3 (1992) no. 3, pp. 323-335 | Article | MR 1186741 | Zbl 0806.57021

[22] Nguyen, T. T. Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., Tome 36 (2013) no. 1, pp. 77-90 | Article | MR 3043400 | Zbl 1266.32036

[23] Oka, Mutsuo Non-degenerate complete intersection singularity, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1997, viii+309 pages | MR 1483897 | Zbl 0930.14034

[24] Oka, Mutsuo Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., Tome 31 (2008) no. 2, pp. 163-182 | Article | MR 2435890 | Zbl 1149.14031

[25] Oka, Mutsuo Non-degenerate mixed functions, Kodai Math. J., Tome 33 (2010) no. 1, pp. 1-62 | Article | MR 2732230 | Zbl 1195.14061

[26] Parusiński, Adam On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math., Tome 97 (1995) no. 3, pp. 369-384 | | Numdam | MR 1353280 | Zbl 0840.32007

[27] Pinchuk, Sergey A counterexample to the strong real Jacobian conjecture, Math. Z., Tome 217 (1994) no. 1, pp. 1-4 | Article | | MR 1292168 | Zbl 0874.26008

[28] Rabier, Patrick J. Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2), Tome 146 (1997) no. 3, pp. 647-691 | Article | MR 1491449 | Zbl 0919.58003

[29] Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., Tome 80 (1995) no. 3, pp. 771-783 | Article | MR 1370115 | Zbl 0871.32024

[30] Suzuki, Masakazu Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace C 2 , J. Math. Soc. Japan, Tome 26 (1974), pp. 241-257 | Article | MR 338423 | Zbl 0276.14001

[31] Tibăr, Mihai Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) (London Math. Soc. Lecture Note Ser.) Tome 263, Cambridge Univ. Press, Cambridge, 1999, pp. xx, 249-264 | MR 1709356 | Zbl 0930.58005

[32] Tibăr, Mihai Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, Tome 170, Cambridge University Press, Cambridge, 2007, xii+253 pages | Article | MR 2360234 | Zbl 1126.32026

[33] Tibăr, Mihai; Zaharia, Alexandru Asymptotic behaviour of families of real curves, Manuscripta Math., Tome 99 (1999) no. 3, pp. 383-393 | Article | MR 1702581 | Zbl 0965.14012

[34] Verdier, Jean-Louis Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Tome 36 (1976), pp. 295-312 | Article | | MR 481096 | Zbl 0333.32010