Classification: 17B10, 17B20, 17B22, 17B35, 17B55
Keywords: weight modules, cuspidal modules, branching rules
@article{AIF_2013__63_1_37_0, author = {Tomasini, Guillaume}, title = {Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {63}, number = {1}, year = {2013}, pages = {37-88}, doi = {10.5802/aif.2755}, zbl = {06177076}, mrnumber = {3089195}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2013__63_1_37_0} }
Tomasini, Guillaume. Restriction to Levi subalgebras and generalization of the category $\mathcal{O}$. Annales de l'Institut Fourier, Volume 63 (2013) no. 1, pp. 37-88. doi : 10.5802/aif.2755. https://aif.centre-mersenne.org/item/AIF_2013__63_1_37_0/
[1] Modules with bounded weight multiplicities for simple Lie algebras, Math. Z., Tome 225 (1997) no. 2, pp. 333-353 | Article | MR 1464935 | Zbl 0884.17004
[2] Differential operators on the base affine space and a study of -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York (1975), pp. 21-64 | MR 578996 | Zbl 0338.58019
[3] A certain category of -modules, Funkcional. Anal. i Priložen, Tome 10 (1976) no. 2, pp. 1-8 | Zbl 0246.17008
[4] Éléments de mathématique, Masson, Paris (1981) (Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6], 290 page) | MR 643362 | Zbl 0498.12001
[5] Complete reducibility of torsion free -modules of finite degree, J. Algebra, Tome 276 (2004) no. 1, pp. 129-142 | Article | MR 2054390 | Zbl 1127.17005
[6] A classification of simple Lie modules having a -dimensional weight space, Trans. Amer. Math. Soc., Tome 299 (1987) no. 2, pp. 683-697 | MR 869228 | Zbl 0635.17002
[7] Stratified -modules, J. Algebra, Tome 163 (1994) no. 1, pp. 219-234 | Article | MR 1257315 | Zbl 0817.17009
[8] Harish-Chandra subalgebras and Gel’fand-Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992), Kluwer Acad. Publ., Dordrecht (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) Tome 424 (1994), pp. 79-93 | MR 1308982 | Zbl 0812.17007
[9] Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc., Tome 322 (1990) no. 2, pp. 757-781 | MR 1013330 | Zbl 0712.17005
[10] The weight representations of semisimple finite dimensional Lie algebras, Kiev University (1987) (Ph. D. Thesis)
[11] The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite -algebras, Adv. Math., Tome 223 (2010) no. 3, pp. 773-796 | Article | MR 2565549 | Zbl 1268.17012 | Zbl pre05662772
[12] Category of -modules with bounded weight multiplicities, Mosc. Math. J., Tome 6 (2006) no. 1, pp. 119-134 (222) | MR 2265951 | Zbl 1127.17006
[13] Cuspidal representations of , Adv. Math., Tome 224 (2010) no. 4, pp. 1517-1547 | Article | MR 2646303 | Zbl 1210.17011
[14] Remarks on classical invariant theory, Trans. Amer. Math. Soc., Tome 313 (1989) no. 2, pp. 539-570 | Article | MR 986027 | Zbl 0674.15021
[15] Transcending classical invariant theory, J. Amer. Math. Soc., Tome 2 (1989) no. 3, pp. 535-552 | Article | MR 985172 | Zbl 0716.22006
[16] Introduction to Lie algebras and representation theory, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 9 (1978) (Second printing, revised, xii+171 pages) | MR 499562 | Zbl 0447.17001
[17] Representations of semisimple Lie algebras in the BGG category , American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 94 (2008) | MR 2428237 | Zbl 1177.17001
[18] Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc., Tome 19 (1968), pp. 1161-1164 | Article | MR 231872 | Zbl 0167.03301
[19] The correspondences of infinitesimal characters for reductive dual pairs in simple Lie groups, Duke Math. J., Tome 97 (1999) no. 2, pp. 347-377 | Article | MR 1682229 | Zbl 0949.22017
[20] Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998), Amer. Math. Soc., Providence, RI (IAS/Park City Math. Ser.) Tome 8 (2000), pp. 293-340 | MR 1737731 | Zbl 0947.22009
[21] Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 2, pp. 537-592 | Article | Numdam | MR 1775361 | Zbl 0962.17002
[22] Generalized Verma modules, VNTL Publishers, L ′ viv, Mathematical Studies Monograph Series, Tome 8 (2000) | MR 1844621 | Zbl 0980.17005
[23] Lectures on -modules, Imperial College Press (2010) | MR 2567743 | Zbl 1257.17001 | Zbl pre05603935
[24] Blocks of the category of cuspidal -modules, Pac. J. Math., Tome 251 (2011) no. 1, pp. 183-196 | Article | MR 2794619 | Zbl 1257.17011 | Zbl pre05900524
[25] Cuspidal -modules and deformations of certain Brauer tree algebras, Adv. Math., Tome 228 (2011) no. 2, pp. 1008-1042 | Article | MR 2822216 | Zbl 1241.17009
[26] Generalized Harish-Chandra modules, Mosc. Math. J., Tome 2 (2002) no. 4, pp. 753-767 (806, Dedicated to Yuri I. Manin on the occasion of his 65th birthday) | MR 1986089 | Zbl 1036.17005
[27] Generalized Harish-Chandra modules: a new direction in the structure theory of representations, Acta Appl. Math., Tome 81 (2004) no. 1-3, pp. 311-326 | Article | MR 2069343 | Zbl 1082.17006
[28] The duality correspondence of infinitesimal characters, Colloq. Math., Tome 70 (1996) no. 1, pp. 93-102 | MR 1373285 | Zbl 0854.22017
[29] The orbit and correspondence for some dual pairs, J. Math. Kyoto Univ., Tome 35 (1995) no. 3, pp. 423-493 | MR 1359007 | Zbl 0848.22023
[30] Splitting criteria for -modules induced from a parabolic and the Berňsteĭ n-Gelfand-Gelfand resolution of a finite-dimensional, irreducible -module, Trans. Amer. Math. Soc., Tome 262 (1980) no. 2, pp. 335-366 | MR 586721 | Zbl 0449.17008
[31] Category : quivers and endomorphism rings of projectives, Represent. Theory, Tome 7 (2003), p. 322-345 (electronic) | Article | MR 2017061 | Zbl 1050.17005
[32] Étude de certaines catégories de modules de poids et de leurs restrictions à des paires duales, Université de Strasbourg (2010) (Ph. D. Thesis) | MR 2682927 | Zbl 1216.17007
[33] On a generalisation of Bernstein-Gelfand-Gelfand category , Comptes rendus - Mathematique, Tome 348 (2010), pp. 509-512 | Article | MR 2645162 | Zbl 1188.17006