Analysis of joint spectral multipliers on Lie groups of polynomial growth  [ Analyse de multiplicateurs spectraux conjoints sur des groupes de Lie à croissance polynomiale ]
Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1215-1263.

On étudie la bornitude L p (1<p<) des opérateurs de la forme m(L 1 ,,L n ) pour un système commutatif L 1 ,,L n d’opérateurs différentiels autoadjoints invariants à gauche sur un groupe de Lie G à croissance polynomiale, qui engendrent une algèbre contenant un opérateur sous-coercif pondéré. En particulier, quand G est un groupe homogène et L 1 ,,L n sont homogènes, on prouve des analogues des theorèmes de multiplicateurs de Mihlin-Hörmander et Marcinkiewicz.

We study the problem of L p -boundedness (1<p<) of operators of the form m(L 1 ,,L n ) for a commuting system of self-adjoint left-invariant differential operators L 1 ,,L n on a Lie group G of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when G is a homogeneous group and L 1 ,,L n are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.

Reçu le : 2010-10-05
Accepté le : 2011-03-14
DOI : https://doi.org/10.5802/aif.2721
Classification : 43A22,  22E30,  42B15
Mots clés: multiplicateurs spectraux, calcul fonctionnel conjoint, opérateurs différentiels, groupes de Lie, croissance polynomiale, opérateurs intégraux singuliers
@article{AIF_2012__62_4_1215_0,
     author = {Martini, Alessio},
     title = {Analysis of joint spectral multipliers on Lie groups of polynomial growth},
     journal = {Annales de l'Institut Fourier},
     pages = {1215--1263},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.5802/aif.2721},
     mrnumber = {3025742},
     zbl = {1255.43003},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2012__62_4_1215_0/}
}
Martini, Alessio. Analysis of joint spectral multipliers on Lie groups of polynomial growth. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1215-1263. doi : 10.5802/aif.2721. https://aif.centre-mersenne.org/item/AIF_2012__62_4_1215_0/

[1] Alexopoulos, G. Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc., Volume 120 (1994) no. 3, pp. 973-979 | Article | MR 1172944 | Zbl 0794.43003

[2] Bergh, Jöran; Löfström, Jörgen Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976 (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR 482275 | Zbl 0344.46071

[3] Berkson, Earl; Paluszyński, Maciej; Weiss, Guido Transference couples and their applications to convolution operators and maximal operators, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) (Lecture Notes in Pure and Appl. Math.) Volume 175, Dekker, New York, 1996, pp. 69-84 | MR 1358144 | Zbl 0839.43014

[4] Christ, Michael L p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., Volume 328 (1991) no. 1, pp. 73-81 | Article | MR 1104196 | Zbl 0739.42010

[5] Christ, Michael The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc., Volume 331 (1992) no. 1, pp. 1-13 | Article | MR 1104197 | Zbl 0765.43002

[6] Coifman, Ronald R.; Weiss, Guido Transference methods in analysis, American Mathematical Society, Providence, R.I., 1976 (Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31) | MR 481928 | Zbl 0377.43001

[7] Cowling, Michael Herz’s “principe de majoration” and the Kunze-Stein phenomenon, Harmonic analysis and number theory (Montreal, PQ, 1996) (CMS Conf. Proc.) Volume 21, Amer. Math. Soc., Providence, RI, 1997, pp. 73-88 | MR 1472779 | Zbl 0964.22008

[8] Cowling, Michael; Sikora, Adam A spectral multiplier theorem for a sublaplacian on SU (2), Math. Z., Volume 238 (2001) no. 1, pp. 1-36 | Article | MR 1860734 | Zbl 0996.42006

[9] Duong, Xuan Thinh; Ouhabaz, El Maati; Sikora, Adam Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | Article | MR 1943098 | Zbl 1029.43006

[10] ter Elst, A. F. M.; Robinson, Derek W. Weighted subcoercive operators on Lie groups, J. Funct. Anal., Volume 157 (1998) no. 1, pp. 88-163 | Article | MR 1637929 | Zbl 0910.22005

[11] Fischer, Véronique; Ricci, Fulvio Gelfand transforms of SO (3)-invariant Schwartz functions on the free group N 3,2 , Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2143-2168 | Article | Numdam | MR 2640916 | Zbl 1187.43007

[12] Folland, G. B.; Stein, Elias M. Hardy spaces on homogeneous groups, Mathematical Notes, Volume 28, Princeton University Press, Princeton, N.J., 1982 | MR 657581 | Zbl 0508.42025

[13] Fraser, A. J. Marcinkiewicz multipliers on the Heisenberg group (1997) (Ph. D. Thesis) | MR 2696216

[14] Fraser, A. J. Convolution kernels of (n+1)-fold Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc., Volume 64 (2001) no. 3, pp. 353-376 | Article | MR 1878888 | Zbl 0987.43002

[15] Fraser, A. J. An (n+1)-fold Marcinkiewicz multiplier theorem on the Heisenberg group, Bull. Austral. Math. Soc., Volume 63 (2001) no. 1, pp. 35-58 | Article | MR 1812307 | Zbl 0979.43004

[16] Grafakos, Loukas Classical Fourier analysis, Graduate Texts in Mathematics, Volume 249, Springer, New York, 2008 | MR 2445437 | Zbl 1220.42001

[17] Hebisch, Waldemar Multiplier theorem on generalized Heisenberg groups, Colloq. Math., Volume 65 (1993) no. 2, pp. 231-239 | MR 1240169 | Zbl 0841.43009

[18] Hebisch, Waldemar Functional calculus for slowly decaying kernels, 1995 (Preprint. Available on the web http://www.math.uni.wroc.pl/~hebisch/)

[19] Hebisch, Waldemar; Sikora, Adam A smooth subadditive homogeneous norm on a homogeneous group, Studia Math., Volume 96 (1990) no. 3, pp. 231-236 | MR 1067309 | Zbl 0723.22007

[20] Hebisch, Waldemar; Zienkiewicz, Jacek Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math., Volume 69 (1995) no. 1, pp. 29-36 | MR 1341678 | Zbl 0835.43009

[21] Helffer, B. Conditions nécessaires d’hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations, Volume 44 (1982) no. 3, pp. 460-481 | Article | MR 661164 | Zbl 0458.35019

[22] Helffer, B.; Nourrigat, J. Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations, Volume 4 (1979) no. 8, pp. 899-958 | Article | MR 537467 | Zbl 0423.35040

[23] Hulanicki, Andrzej A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., Volume 78 (1984) no. 3, pp. 253-266 | MR 782662 | Zbl 0595.43007

[24] Ludwig, Jean Dual topology of diamond groups, J. Reine Angew. Math., Volume 467 (1995), pp. 67-87 | Article | MR 1355922 | Zbl 0833.22011

[25] Martini, Alessio Algebras of differential operators on Lie groups and spectral multipliers (2010) (Ph. D. Thesis)

[26] Martini, Alessio Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal., Volume 260 (2011) no. 9, pp. 2767-2814 | Article | MR 2772351 | Zbl 1226.22012

[27] Mauceri, Giancarlo Zonal multipliers on the Heisenberg group, Pacific J. Math., Volume 95 (1981) no. 1, pp. 143-159 http://projecteuclid.org/getRecord?id=euclid.pjm/1102735536 | Article | MR 631666 | Zbl 0474.43009

[28] Mauceri, Giancarlo; Meda, Stefano Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 3-4, pp. 141-154 | Article | MR 1125759 | Zbl 0763.43005

[29] Métivier, Guy Hypoellipticité analytique sur des groupes nilpotents de rang 2, Duke Math. J., Volume 47 (1980) no. 1, pp. 195-221 http://projecteuclid.org/getRecord?id=euclid.dmj/1077313871 | Article | MR 563376 | Zbl 0433.35015

[30] Müller, D.; Stein, Elias M. On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9), Volume 73 (1994) no. 4, pp. 413-440 | MR 1290494 | Zbl 0838.43011

[31] Müller, Detlef; Ricci, Fulvio; Stein, Elias M. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math., Volume 119 (1995) no. 2, pp. 199-233 | Article | MR 1312498 | Zbl 0857.43012

[32] Müller, Detlef; Ricci, Fulvio; Stein, Elias M. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z., Volume 221 (1996) no. 2, pp. 267-291 | Article | MR 1376298 | Zbl 0863.43001

[33] Müller, Detlef; Seeger, Andreas Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math., Volume 141 (2004), pp. 315-340 | Article | MR 2063040 | Zbl 1054.22007

[34] Nielsen, Ole A. Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, Queen’s Papers in Pure and Applied Mathematics, Volume 63, Queen’s University, Kingston, ON, 1983 | MR 773296 | Zbl 0591.22004

[35] Rockland, Charles Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc., Volume 240 (1978), pp. 1-52 | Article | MR 486314 | Zbl 0326.22007

[36] Rudin, Walter Real and complex analysis, McGraw-Hill Book Co., New York, 1974 (McGraw-Hill Series in Higher Mathematics) | MR 344043 | Zbl 0278.26001

[37] Runst, Thomas; Sickel, Winfried Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, Volume 3, Walter de Gruyter & Co., Berlin, 1996 | MR 1419319 | Zbl 0873.35001

[38] Schmeisser, Hans-Jürgen Recent developments in the theory of function spaces with dominating mixed smoothness, Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, May 30-June 6, 2006, Volume 8, Czech Academy of Sciences, Mathematical Institute, Praha, 2007, pp. 145-204 | MR 2657119

[39] Schmeisser, Hans-Jürgen; Sickel, Winfried Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, J. Approx. Theory, Volume 128 (2004) no. 2, pp. 115-150 | Article | MR 2068694 | Zbl 1045.41009

[40] Schmeisser, Hans-Jürgen; Triebel, Hans Topics in Fourier analysis and function spaces, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], Volume 42, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987 | MR 900143 | Zbl 0661.46025

[41] Sickel, Winfried; Ullrich, Tino Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Theory, Volume 161 (2009) no. 2, pp. 748-786 | Article | MR 2563079 | Zbl 1194.46056

[42] Sikora, Adam On the L 2 L norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups, Trans. Amer. Math. Soc., Volume 351 (1999) no. 9, pp. 3743-3755 | Article | MR 1670160 | Zbl 0936.42009

[43] Sikora, Adam Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J., Volume 58 (2009) no. 1, pp. 317-334 | Article | MR 2504414 | Zbl 1159.42009

[44] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970 | MR 290095 | Zbl 0207.13501

[45] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Volume 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy. Monographs in Harmonic Analysis, III) | MR 1232192 | Zbl 0821.42001

[46] Stempak, Krzysztof A weighted multiplier theorem for Rockland operators, Colloq. Math., Volume 51 (1987), pp. 335-344 | MR 891303 | Zbl 0622.43002

[47] Triebel, Hans Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, Volume 18, North-Holland Publishing Co., Amsterdam, 1978 | MR 503903 | Zbl 0387.46032

[48] Triebel, Hans Spaces of Besov-Hardy-Sobolev type, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978 (Teubner-Texte zur Mathematik, With German, French and Russian summaries) | MR 581907 | Zbl 0408.46024

[49] Triebel, Hans Theory of function spaces, Monographs in Mathematics, Volume 78, Birkhäuser Verlag, Basel, 1983 | Article | MR 781540 | Zbl 0763.46025

[50] Triebel, Hans The structure of functions, Monographs in Mathematics, Volume 97, Birkhäuser Verlag, Basel, 2001 | MR 1851996 | Zbl 0984.46021

[51] Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T. Analysis and geometry on groups, Cambridge Tracts in Mathematics, Volume 100, Cambridge University Press, Cambridge, 1992 | MR 1218884 | Zbl 1179.22009

[52] Veneruso, Alessandro Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc., Volume 61 (2000) no. 1, pp. 53-68 | Article | MR 1819315 | Zbl 0967.43004